How do you solve and graph the inequality $6x + 5 \geqslant 7x$ ?
Last updated date: 25th Mar 2023
•
Total views: 207.6k
•
Views today: 3.85k
Answer
207.6k+ views
Hint: In the given question, we have to solve and plot the graph of the inequality given to us in the problem. We can solve the inequality using the simple algebraic rules of simplification and transposition rule. Then, we can plot the simplified form of the inequality obtained.
Complete step by step solution:
Here in this question, the inequality provided to us is $6x + 5 \geqslant 7x$ .
Now, we shift all the terms consisting of x to the right side of the question. So, we get,
$ \Rightarrow 5 \geqslant 7x - 6x$
Simplifying the inequality further, we get,
$ \Rightarrow x \leqslant 5$
Hence, the solution of the inequality $6x + 5 \geqslant 7x$ are all the real values of $x$ less than or equal to $5$.
So, the simplified form of the inequality $6x + 5 \geqslant 7x$ is $x \leqslant 5$ obtained by using the transposition and algebraic simplification rules.
Now, we have to graph the inequality $6x + 5 \geqslant 7x$. To graph the original inequality $6x + 5 \geqslant 7x$, we can graph the inequality obtained after simplifying the inequality using the transposition rule $x \leqslant 5$.
So, to plot the graph of an inequality, we have to first sketch the graph of the line obtained by replacing the inequality sign by “equals to sign.” Then, the line divides the Cartesian plane into two halves. We put coordinates of the points from both the regions and points from whichever region satisfies the inequality, that region represents the graph of the inequality.
So, we replace the inequality sign in inequality $x \leqslant 5$ with an “equals to” sign so as to get the equation of a line.
So, we get the equation of the line as $x = 5$.
Hence, now we draw the graph of the line $x = 5$. The line represented by the equation $x = 5$ is parallel to the y-axis and is at a distance of $5$ units from the y-axis.
Hence, the graph plotted for the obtained line is represented below:
We know that a line divides the Cartesian plane into two halves. After drawing the graph of the line, we choose which half represents the inequality given to us in the problem. We substitute the coordinates of one point lying in both the regions and the region consisting of the point that satisfies the inequality is the graph of that inequality.
So, we substitute the coordinates of the origin in the inequality $6x + 5 \geqslant 7x$.
So, we get,
$ \Rightarrow 6\left( 0 \right) + 5 \geqslant 7\left( 0 \right)$
$ \Rightarrow 5 \geqslant 0$
We know that the above expression is true. Hence, the coordinates of origin satisfy the given inequality.
Hence, the graph of the inequality consists of the region consisting of the origin. So, we get the graph of the inequality as:
Note:
The graph plotted is a two dimensional graph in x-axis versus y-axis. This is the easiest way of solving such a question and the solution can be referred whenever one needs to do any other question of the same type.
Complete step by step solution:
Here in this question, the inequality provided to us is $6x + 5 \geqslant 7x$ .
Now, we shift all the terms consisting of x to the right side of the question. So, we get,
$ \Rightarrow 5 \geqslant 7x - 6x$
Simplifying the inequality further, we get,
$ \Rightarrow x \leqslant 5$
Hence, the solution of the inequality $6x + 5 \geqslant 7x$ are all the real values of $x$ less than or equal to $5$.
So, the simplified form of the inequality $6x + 5 \geqslant 7x$ is $x \leqslant 5$ obtained by using the transposition and algebraic simplification rules.
Now, we have to graph the inequality $6x + 5 \geqslant 7x$. To graph the original inequality $6x + 5 \geqslant 7x$, we can graph the inequality obtained after simplifying the inequality using the transposition rule $x \leqslant 5$.
So, to plot the graph of an inequality, we have to first sketch the graph of the line obtained by replacing the inequality sign by “equals to sign.” Then, the line divides the Cartesian plane into two halves. We put coordinates of the points from both the regions and points from whichever region satisfies the inequality, that region represents the graph of the inequality.
So, we replace the inequality sign in inequality $x \leqslant 5$ with an “equals to” sign so as to get the equation of a line.
So, we get the equation of the line as $x = 5$.
Hence, now we draw the graph of the line $x = 5$. The line represented by the equation $x = 5$ is parallel to the y-axis and is at a distance of $5$ units from the y-axis.
Hence, the graph plotted for the obtained line is represented below:

We know that a line divides the Cartesian plane into two halves. After drawing the graph of the line, we choose which half represents the inequality given to us in the problem. We substitute the coordinates of one point lying in both the regions and the region consisting of the point that satisfies the inequality is the graph of that inequality.
So, we substitute the coordinates of the origin in the inequality $6x + 5 \geqslant 7x$.
So, we get,
$ \Rightarrow 6\left( 0 \right) + 5 \geqslant 7\left( 0 \right)$
$ \Rightarrow 5 \geqslant 0$
We know that the above expression is true. Hence, the coordinates of origin satisfy the given inequality.
Hence, the graph of the inequality consists of the region consisting of the origin. So, we get the graph of the inequality as:

Note:
The graph plotted is a two dimensional graph in x-axis versus y-axis. This is the easiest way of solving such a question and the solution can be referred whenever one needs to do any other question of the same type.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
