
How do you solve and find the value of $\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ ?
Answer
453.6k+ views
Hint: We are asked to solve and find the value of $\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ , we start our solution by considering ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ as $\theta $ , then of the that we use $\sin \left( 2\theta \right)=2\sin \theta \cos \theta $ identity, after that we will learn how the sin and ${{\sin }^{-1}}$ are connected to each other, which we use further to solve the problem, we will also use ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ to change the $\theta $ to cos theta or sin theta into one another.
Complete step by step solution:
We are given a function as $\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ , we have to evaluate the value of this function. To do so, we will learn that trigonometric functions are related to its inverses and we can also convert one trigonometric function to another.
Now as we have $\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ .
So, we consider ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ as $\theta $ then our equation become –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\sin \left( 2\theta \right)$
Now, we know that –
$\sin 2\theta =2\sin \theta \cos \theta $
So, we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=2\sin \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right).\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ …………………………………. (1)
Now we learn about how the ratio and its inverse are connected to each other.
For sin we have that $\sin \left( {{\sin }^{-1}}\theta \right)=\theta $
And similarly for cos, we have $\cos \left( {{\cos }^{-1}}\theta \right)=\theta $ in equation (1), we have $\sin \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ .
So, using above identity we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\dfrac{1}{2}$
For $\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ we convert ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ into ${{\cos }^{-1}}$ .
Now, as we know, $\theta ={{\sin }^{-1}}\dfrac{1}{2}$ so, $\sin \theta =\dfrac{1}{2}$
We know ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Hence $\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }$ .
Hence, we get –
$\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }$
As ${{\sin }^{2}}\theta =\dfrac{1}{2}$ so,
$\cos \theta =\pm \sqrt{1-{{\left( \dfrac{1}{2} \right)}^{2}}}$
By simplifying, we get –
$\cos \theta =\pm \sqrt{\dfrac{3}{4}}$ (as $1-{{\left( \dfrac{1}{2} \right)}^{2}}=1-\dfrac{1}{4}=\dfrac{3}{4}$ )
So, $\cos \theta =\pm \dfrac{\sqrt{3}}{2}$
Hence, $\theta ={{\cos }^{-1}}\left( \pm \dfrac{\sqrt{3}}{2} \right)$
So, we get –
${{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \pm \dfrac{\sqrt{3}}{2} \right)$
Thus $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\cos \left( {{\cos }^{-1}}\left( \pm \dfrac{\sqrt{3}}{2} \right) \right)$
We get –
$=\pm \dfrac{\sqrt{3}}{2}$
So, we get two $\theta $ values
Case (I) When $\cos .{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=+\dfrac{\sqrt{3}}{2}$
Then as ${{\sin }^{-1}}\left( \sin \left( \dfrac{1}{2} \right) \right)=\dfrac{1}{2}$ and $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\dfrac{\sqrt{3}}{2}$
So using these in equation (1) we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=2\times \dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}$
$=\dfrac{\sqrt{3}}{2}$
Case (II) when $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=-\dfrac{\sqrt{3}}{2}$ as ${{\sin }^{-1}}\left( \sin \left( \dfrac{1}{2} \right) \right)=\dfrac{1}{2}$ and $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=-\dfrac{\sqrt{3}}{2}$
We get by using these in equation (1)
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=2\times \dfrac{1}{2}\times \dfrac{-\sqrt{3}}{2}$
$=-\dfrac{\sqrt{3}}{2}$
Hence, we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\pm \dfrac{\sqrt{3}}{2}$.
Note: While solving such problems we should be very careful with identity like $\sin 2x\ne 2\sin x$ or $\cos 2\theta \ne 2\cos \theta \sin \theta $ .
We should not mix or use appropriate identity; also we should always cross check solutions so that change at error will get eliminated.
While solving fractions we always report answers in the simplest form so if something is common we need to cancel it always.
Complete step by step solution:
We are given a function as $\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ , we have to evaluate the value of this function. To do so, we will learn that trigonometric functions are related to its inverses and we can also convert one trigonometric function to another.
Now as we have $\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ .
So, we consider ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ as $\theta $ then our equation become –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\sin \left( 2\theta \right)$
Now, we know that –
$\sin 2\theta =2\sin \theta \cos \theta $
So, we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=2\sin \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right).\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ …………………………………. (1)
Now we learn about how the ratio and its inverse are connected to each other.
For sin we have that $\sin \left( {{\sin }^{-1}}\theta \right)=\theta $
And similarly for cos, we have $\cos \left( {{\cos }^{-1}}\theta \right)=\theta $ in equation (1), we have $\sin \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ .
So, using above identity we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\dfrac{1}{2}$
For $\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)$ we convert ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)$ into ${{\cos }^{-1}}$ .
Now, as we know, $\theta ={{\sin }^{-1}}\dfrac{1}{2}$ so, $\sin \theta =\dfrac{1}{2}$
We know ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Hence $\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }$ .
Hence, we get –
$\cos \theta =\pm \sqrt{1-{{\sin }^{2}}\theta }$
As ${{\sin }^{2}}\theta =\dfrac{1}{2}$ so,
$\cos \theta =\pm \sqrt{1-{{\left( \dfrac{1}{2} \right)}^{2}}}$
By simplifying, we get –
$\cos \theta =\pm \sqrt{\dfrac{3}{4}}$ (as $1-{{\left( \dfrac{1}{2} \right)}^{2}}=1-\dfrac{1}{4}=\dfrac{3}{4}$ )
So, $\cos \theta =\pm \dfrac{\sqrt{3}}{2}$
Hence, $\theta ={{\cos }^{-1}}\left( \pm \dfrac{\sqrt{3}}{2} \right)$
So, we get –
${{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \pm \dfrac{\sqrt{3}}{2} \right)$
Thus $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\cos \left( {{\cos }^{-1}}\left( \pm \dfrac{\sqrt{3}}{2} \right) \right)$
We get –
$=\pm \dfrac{\sqrt{3}}{2}$
So, we get two $\theta $ values
Case (I) When $\cos .{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=+\dfrac{\sqrt{3}}{2}$
Then as ${{\sin }^{-1}}\left( \sin \left( \dfrac{1}{2} \right) \right)=\dfrac{1}{2}$ and $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\dfrac{\sqrt{3}}{2}$
So using these in equation (1) we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=2\times \dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}$
$=\dfrac{\sqrt{3}}{2}$
Case (II) when $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=-\dfrac{\sqrt{3}}{2}$ as ${{\sin }^{-1}}\left( \sin \left( \dfrac{1}{2} \right) \right)=\dfrac{1}{2}$ and $\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=-\dfrac{\sqrt{3}}{2}$
We get by using these in equation (1)
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=2\times \dfrac{1}{2}\times \dfrac{-\sqrt{3}}{2}$
$=-\dfrac{\sqrt{3}}{2}$
Hence, we get –
$\sin \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right)=\pm \dfrac{\sqrt{3}}{2}$.
Note: While solving such problems we should be very careful with identity like $\sin 2x\ne 2\sin x$ or $\cos 2\theta \ne 2\cos \theta \sin \theta $ .
We should not mix or use appropriate identity; also we should always cross check solutions so that change at error will get eliminated.
While solving fractions we always report answers in the simplest form so if something is common we need to cancel it always.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Add the following rational numbers dfrac516 and df class 7 maths CBSE

Write the following numbers in words 190909900 class 7 maths CBSE

How many rational numbers are there between dfrac16 class 7 maths CBSE

Write the sum of the number40 + 25 as the product of class 7 maths CBSE

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
