
How do you solve \[2\cos x+1=0\] for \[{{0}^{\circ }}\le x\le {{360}^{\circ }}\]?
Answer
527.7k+ views
Hint: In this problem, we have to solve for x from the given trigonometric expression within the given interval. We can first subtract 1 on both sides and we can divide by 2 on both sides, we can get an expression which is equal to cos x. Then we can find the value for x for which the cos value equals to the given data.
Complete step by step solution:
We know that the given trigonometric expression is,
\[2\cos x+1=0\]
We can now subtract 1 on both the left-hand side and the right-hand side of the equation ,we get
\[\Rightarrow 2\cos x=-1\]
Now we can divide the above step by 2 on both the left-hand side and the right-hand side of the equation, we get
\[\Rightarrow \cos x=\dfrac{-1}{2}\]
We know that cos x is less than 0, then x is in the second and third quadrant.
We know that the value of x will be \[{{60}^{\circ }}\], when cos x = \[\dfrac{1}{2}\].
We can subtract 180 degree and 60 degree to get the value of x in second quadrant, we get
\[\Rightarrow x=\left( {{180}^{\circ }}-{{60}^{\circ }} \right)={{120}^{\circ }}\] in second quadrant.
We can add 180 degree and 60 degree to get the value of x in third quadrant, we get
\[\Rightarrow x=\left( {{180}^{\circ }}+{{60}^{\circ }} \right)={{240}^{\circ }}\] in third quadrant.
Therefore, the value of x within the interval \[{{0}^{\circ }}\le x\le {{360}^{\circ }}\] is x = \[{{120}^{\circ }},{{240}^{\circ }}\].
Note: Students make mistakes while finding the value of x within the interval. We should know some trigonometric degree values to solve these types of problems. We should also substitute the correct degree values to get the exact answer for the given problem.
Complete step by step solution:
We know that the given trigonometric expression is,
\[2\cos x+1=0\]
We can now subtract 1 on both the left-hand side and the right-hand side of the equation ,we get
\[\Rightarrow 2\cos x=-1\]
Now we can divide the above step by 2 on both the left-hand side and the right-hand side of the equation, we get
\[\Rightarrow \cos x=\dfrac{-1}{2}\]
We know that cos x is less than 0, then x is in the second and third quadrant.
We know that the value of x will be \[{{60}^{\circ }}\], when cos x = \[\dfrac{1}{2}\].
We can subtract 180 degree and 60 degree to get the value of x in second quadrant, we get
\[\Rightarrow x=\left( {{180}^{\circ }}-{{60}^{\circ }} \right)={{120}^{\circ }}\] in second quadrant.
We can add 180 degree and 60 degree to get the value of x in third quadrant, we get
\[\Rightarrow x=\left( {{180}^{\circ }}+{{60}^{\circ }} \right)={{240}^{\circ }}\] in third quadrant.
Therefore, the value of x within the interval \[{{0}^{\circ }}\le x\le {{360}^{\circ }}\] is x = \[{{120}^{\circ }},{{240}^{\circ }}\].
Note: Students make mistakes while finding the value of x within the interval. We should know some trigonometric degree values to solve these types of problems. We should also substitute the correct degree values to get the exact answer for the given problem.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

