
How to solve \[2 \times \exp \left( x \right) + 2x - 7 = 0\]?
Answer
539.7k+ views
Hint:
Here, we will equate the given equation i.e. exponential equation and linear equation with zero separately, to find the solution of the equation. We will then plot the graph for these two equations and find the Point of intersection. The point of intersection is the solution for the given equation.
Complete step by step solution:
We are given with an equation \[2{e^x} + 2x - 7 = 0\]
Rewriting the given equation, we get
\[ \Rightarrow 2{e^x} = 7 - 2x\] …………………………………………………….\[\left( 1 \right)\]
Let us consider the function, \[f\left( x \right) = 2{e^x}\] and \[g\left( x \right) = 7 - 2x\]
Now, equating the function \[f\left( x \right)\] equals to zero, we get
\[2{e^x} = 0\]
Rewriting the equation, we get
\[ \Rightarrow {e^x} = \dfrac{0}{2}\]
\[ \Rightarrow {e^x} = 0\]
Now, by taking the exponential to the other side, we get
\[ \Rightarrow x = \log 0\]
Thus, \[x\] is not defined for the function \[f\left( x \right)\].
Now, equating the function \[g\left( x \right)\] equals to zero, we get
\[7 - 2x = 0\]
Adding \[2x\] on both the sides, we get
\[ \Rightarrow 2x = 7\]
Dividing both sides by 2, we get
\[ \Rightarrow x = \dfrac{7}{2}\]
Now, we will plot the graph for both the functions and we will find the point of intersection, we get
Therefore, the solution \[2 \times \exp \left( x \right) + 2x - 7 = 0\] is \[0.92\].
Note:
The given equation is a combination of an exponential equation and linear equation. So, it is quite impossible to solve the given equation easily. So, we should remember that these types of functions should be segregated and equated separately to find the solution or can be plotted into graphs to find the solution by pointing to the point of intersection of two functions, we will find the solution of the given equation. An exponential function is defined as a function in a variable written in exponents. A linear equation is defined as an equation with the highest degree as one.
Here, we will equate the given equation i.e. exponential equation and linear equation with zero separately, to find the solution of the equation. We will then plot the graph for these two equations and find the Point of intersection. The point of intersection is the solution for the given equation.
Complete step by step solution:
We are given with an equation \[2{e^x} + 2x - 7 = 0\]
Rewriting the given equation, we get
\[ \Rightarrow 2{e^x} = 7 - 2x\] …………………………………………………….\[\left( 1 \right)\]
Let us consider the function, \[f\left( x \right) = 2{e^x}\] and \[g\left( x \right) = 7 - 2x\]
Now, equating the function \[f\left( x \right)\] equals to zero, we get
\[2{e^x} = 0\]
Rewriting the equation, we get
\[ \Rightarrow {e^x} = \dfrac{0}{2}\]
\[ \Rightarrow {e^x} = 0\]
Now, by taking the exponential to the other side, we get
\[ \Rightarrow x = \log 0\]
Thus, \[x\] is not defined for the function \[f\left( x \right)\].
Now, equating the function \[g\left( x \right)\] equals to zero, we get
\[7 - 2x = 0\]
Adding \[2x\] on both the sides, we get
\[ \Rightarrow 2x = 7\]
Dividing both sides by 2, we get
\[ \Rightarrow x = \dfrac{7}{2}\]
Now, we will plot the graph for both the functions and we will find the point of intersection, we get
Therefore, the solution \[2 \times \exp \left( x \right) + 2x - 7 = 0\] is \[0.92\].
Note:
The given equation is a combination of an exponential equation and linear equation. So, it is quite impossible to solve the given equation easily. So, we should remember that these types of functions should be segregated and equated separately to find the solution or can be plotted into graphs to find the solution by pointing to the point of intersection of two functions, we will find the solution of the given equation. An exponential function is defined as a function in a variable written in exponents. A linear equation is defined as an equation with the highest degree as one.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

