
How is sodium hydroxide manufactured in industries? Name the process. In this process a gas ${\rm{X}}$ is formed as a by-product. This gas reacts with lime water to give a compound ${\rm{Y}}$, which is used as a bleaching agent in the chemical industry. Identify ${\rm{X}}$ and ${\rm{Y}}$ and write the chemical equation of the reactions involved.
Answer
473.7k+ views
Hint:
We have different industrial manufacturing processes for different compounds including ${\rm{NaOH}}$. The process becomes more useful if the by-products can also be of further use.
Complete step by step solution
We can define sodium hydroxide as a strong base being a hydroxide of an alkali metal. The chemical formula is ${\rm{NaOH}}$. It has varied applications including being used in the manufacturing of soap, detergents, paper and many other different chemicals; it is also used in petroleum refining, in laboratories, or in the purification of aluminum ore, bauxite and many more. This has led to manufacturing of ${\rm{NaOH}}$ on industrial scale.
The industrial manufacturing process for ${\rm{NaOH}}$ involves electrolysis of brine which is basically common salt dissolved in water. The process is known as chlor-alkali process. We will get a better understanding about the suitability of this name after going through the process briefly.
Brine is basically $NaCl\left( {aq} \right)$ and its electrolysis leads to its decomposition for which the chemical reaction can be written as follows:
\[2NaCl\left( {aq} \right) + 2{H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + C{l_2}\left( g \right) + {H_2}\left( g \right)\]
As it is evident that during manufacturing of ${\rm{NaOH}}$ that it is an alkali, \[C{l_2}\] gas is also produced as a by-product giving the name chlor-alkali to the process. So, we can infer that $X$ is \[C{l_2}\].
Now, as it is given that \[C{l_2}\] reacts with lime water for which we have chemical formula $Ca{\left( {OH} \right)_2}$ and the reaction between the two can be shown by the following chemical equation:
\[C{l_2}\left( g \right) + Ca{\left( {OH} \right)_2}\left( {aq} \right) \to CaOC{l_2}\left( {aq} \right) + {H_2}O\left( l \right)\]
We know that \[CaOC{l_2}\] is called bleaching powder for its bleaching properties. So, we can say that $Y$ is \[CaOC{l_2}\].
Note:
Here, we have one more by-product, \[{H_2}\left( g \right)\] but we have to frame our answer by considering the further related reactions as well which are given by \[C{l_2}\] not \[{H_2}\].
We have different industrial manufacturing processes for different compounds including ${\rm{NaOH}}$. The process becomes more useful if the by-products can also be of further use.
Complete step by step solution
We can define sodium hydroxide as a strong base being a hydroxide of an alkali metal. The chemical formula is ${\rm{NaOH}}$. It has varied applications including being used in the manufacturing of soap, detergents, paper and many other different chemicals; it is also used in petroleum refining, in laboratories, or in the purification of aluminum ore, bauxite and many more. This has led to manufacturing of ${\rm{NaOH}}$ on industrial scale.
The industrial manufacturing process for ${\rm{NaOH}}$ involves electrolysis of brine which is basically common salt dissolved in water. The process is known as chlor-alkali process. We will get a better understanding about the suitability of this name after going through the process briefly.
Brine is basically $NaCl\left( {aq} \right)$ and its electrolysis leads to its decomposition for which the chemical reaction can be written as follows:
\[2NaCl\left( {aq} \right) + 2{H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + C{l_2}\left( g \right) + {H_2}\left( g \right)\]
As it is evident that during manufacturing of ${\rm{NaOH}}$ that it is an alkali, \[C{l_2}\] gas is also produced as a by-product giving the name chlor-alkali to the process. So, we can infer that $X$ is \[C{l_2}\].
Now, as it is given that \[C{l_2}\] reacts with lime water for which we have chemical formula $Ca{\left( {OH} \right)_2}$ and the reaction between the two can be shown by the following chemical equation:
\[C{l_2}\left( g \right) + Ca{\left( {OH} \right)_2}\left( {aq} \right) \to CaOC{l_2}\left( {aq} \right) + {H_2}O\left( l \right)\]
We know that \[CaOC{l_2}\] is called bleaching powder for its bleaching properties. So, we can say that $Y$ is \[CaOC{l_2}\].
Note:
Here, we have one more by-product, \[{H_2}\left( g \right)\] but we have to frame our answer by considering the further related reactions as well which are given by \[C{l_2}\] not \[{H_2}\].
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
