
How is sodium hydroxide manufactured in industries? Name the process. In this process a gas ${\rm{X}}$ is formed as a by-product. This gas reacts with lime water to give a compound ${\rm{Y}}$, which is used as a bleaching agent in the chemical industry. Identify ${\rm{X}}$ and ${\rm{Y}}$ and write the chemical equation of the reactions involved.
Answer
575.1k+ views
Hint:
We have different industrial manufacturing processes for different compounds including ${\rm{NaOH}}$. The process becomes more useful if the by-products can also be of further use.
Complete step by step solution
We can define sodium hydroxide as a strong base being a hydroxide of an alkali metal. The chemical formula is ${\rm{NaOH}}$. It has varied applications including being used in the manufacturing of soap, detergents, paper and many other different chemicals; it is also used in petroleum refining, in laboratories, or in the purification of aluminum ore, bauxite and many more. This has led to manufacturing of ${\rm{NaOH}}$ on industrial scale.
The industrial manufacturing process for ${\rm{NaOH}}$ involves electrolysis of brine which is basically common salt dissolved in water. The process is known as chlor-alkali process. We will get a better understanding about the suitability of this name after going through the process briefly.
Brine is basically $NaCl\left( {aq} \right)$ and its electrolysis leads to its decomposition for which the chemical reaction can be written as follows:
\[2NaCl\left( {aq} \right) + 2{H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + C{l_2}\left( g \right) + {H_2}\left( g \right)\]
As it is evident that during manufacturing of ${\rm{NaOH}}$ that it is an alkali, \[C{l_2}\] gas is also produced as a by-product giving the name chlor-alkali to the process. So, we can infer that $X$ is \[C{l_2}\].
Now, as it is given that \[C{l_2}\] reacts with lime water for which we have chemical formula $Ca{\left( {OH} \right)_2}$ and the reaction between the two can be shown by the following chemical equation:
\[C{l_2}\left( g \right) + Ca{\left( {OH} \right)_2}\left( {aq} \right) \to CaOC{l_2}\left( {aq} \right) + {H_2}O\left( l \right)\]
We know that \[CaOC{l_2}\] is called bleaching powder for its bleaching properties. So, we can say that $Y$ is \[CaOC{l_2}\].
Note:
Here, we have one more by-product, \[{H_2}\left( g \right)\] but we have to frame our answer by considering the further related reactions as well which are given by \[C{l_2}\] not \[{H_2}\].
We have different industrial manufacturing processes for different compounds including ${\rm{NaOH}}$. The process becomes more useful if the by-products can also be of further use.
Complete step by step solution
We can define sodium hydroxide as a strong base being a hydroxide of an alkali metal. The chemical formula is ${\rm{NaOH}}$. It has varied applications including being used in the manufacturing of soap, detergents, paper and many other different chemicals; it is also used in petroleum refining, in laboratories, or in the purification of aluminum ore, bauxite and many more. This has led to manufacturing of ${\rm{NaOH}}$ on industrial scale.
The industrial manufacturing process for ${\rm{NaOH}}$ involves electrolysis of brine which is basically common salt dissolved in water. The process is known as chlor-alkali process. We will get a better understanding about the suitability of this name after going through the process briefly.
Brine is basically $NaCl\left( {aq} \right)$ and its electrolysis leads to its decomposition for which the chemical reaction can be written as follows:
\[2NaCl\left( {aq} \right) + 2{H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + C{l_2}\left( g \right) + {H_2}\left( g \right)\]
As it is evident that during manufacturing of ${\rm{NaOH}}$ that it is an alkali, \[C{l_2}\] gas is also produced as a by-product giving the name chlor-alkali to the process. So, we can infer that $X$ is \[C{l_2}\].
Now, as it is given that \[C{l_2}\] reacts with lime water for which we have chemical formula $Ca{\left( {OH} \right)_2}$ and the reaction between the two can be shown by the following chemical equation:
\[C{l_2}\left( g \right) + Ca{\left( {OH} \right)_2}\left( {aq} \right) \to CaOC{l_2}\left( {aq} \right) + {H_2}O\left( l \right)\]
We know that \[CaOC{l_2}\] is called bleaching powder for its bleaching properties. So, we can say that $Y$ is \[CaOC{l_2}\].
Note:
Here, we have one more by-product, \[{H_2}\left( g \right)\] but we have to frame our answer by considering the further related reactions as well which are given by \[C{l_2}\] not \[{H_2}\].
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

