
Sketch the graph \[y = \left| {x - 1} \right|\] . Evaluate \[\int\limits_{ - 2}^4 {\left| {x - 1} \right|} dx\] . What does this value of the integral represent on the graph?
Answer
528.3k+ views
Hint: Integration is the process of finding the antiderivative. Finding the integral of a function with respect to x means finding the area to the x axis from the curve. The integral is usually called the antiderivative, because integrating is the reverse process of differentiating. To evaluate \[\int\limits_{ - 2}^4 {\left| {x - 1} \right|} dx\] we need to find the integration of the given function such that the range is from -2 to 4, hence evaluate based on the given interval.
Complete step-by-step answer:
Let us write the given data,
We need to sketch the graph for: \[y = \left| {x - 1} \right|\] and Evaluate \[\int\limits_{ - 2}^4 {\left| {x - 1} \right|} dx\] .
As the range of the integral given is from -2 to 4, hence we get:
\[\int\limits_{ - 2}^4 {\left| {x - 1} \right|} dx\] = \[\int\limits_{ - 2}^1 {\left| {x - 1} \right|} + \int\limits_1^4 {\left| {x - 1} \right|} \]
\[\left| {x - 1} \right|\] for \[x < 1\] , \[1 - x\]
\[\left| {x - 1} \right|\] for \[x > 1\] , \[x - 1\]
Hence, we get the equation as:
\[ \Rightarrow \] \[\int\limits_{ - 2}^1 {\left( {1 - x} \right)dx} + \int\limits_1^4 {\left( {x - 1} \right)dx} \]
Apply the integrals, we get
\[ \Rightarrow \] \[\left[ {x - \dfrac{x{^2}}{2}} \right] _{ - 2}^1 + \left[ {\dfrac{{{x^2}}}{2} - x} \right] _1^4\]
Now, find the integration of the terms as:
\[ \Rightarrow \] \[\left[ {\left( {1 - \dfrac{1}{2}} \right) - \left( { - 2 - \dfrac{4}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{4^2}}}{2}} \right) - \left( {\dfrac{1}{2}} \right) - 1} \right] \]
\[ \Rightarrow \] \[\left[ {\dfrac{1}{2} + 4} \right] + \left[ {4 + \dfrac{1}{2}} \right] \]
\[ \Rightarrow \] \[8 + 1 = 9\] sq. units.
Hence, the graph of \[y = \left| {x - 1} \right|\] is represented as:
So, the correct answer is “Option B”.
Note: The different methods of integration include:
Integration by Substitution: To find the integration of a function, thus we can find the integration by introducing a new independent variable. This method is called Integration by Substitution.
A.Integration by Parts: Integration by parts requires a special technique for integration of a function, where the integrand function is the multiple of two or more functions.
B.Integration Using Trigonometric Identities: In the integration of a function, if the integrand involves any kind of trigonometric function, then we use trigonometric identities to simplify the function that can be easily integrated.
C.Integration by Partial Fraction: a rational function is defined as the ratio of two polynomials which can be expressed in the form of partial fractions.
D.Integration of Some particular function: Integration of some particular function involves some important formulae of integration that can be applied to make other integration into the standard form of the integrand.
Complete step-by-step answer:
Let us write the given data,
We need to sketch the graph for: \[y = \left| {x - 1} \right|\] and Evaluate \[\int\limits_{ - 2}^4 {\left| {x - 1} \right|} dx\] .
As the range of the integral given is from -2 to 4, hence we get:
\[\int\limits_{ - 2}^4 {\left| {x - 1} \right|} dx\] = \[\int\limits_{ - 2}^1 {\left| {x - 1} \right|} + \int\limits_1^4 {\left| {x - 1} \right|} \]
\[\left| {x - 1} \right|\] for \[x < 1\] , \[1 - x\]
\[\left| {x - 1} \right|\] for \[x > 1\] , \[x - 1\]
Hence, we get the equation as:
\[ \Rightarrow \] \[\int\limits_{ - 2}^1 {\left( {1 - x} \right)dx} + \int\limits_1^4 {\left( {x - 1} \right)dx} \]
Apply the integrals, we get
\[ \Rightarrow \] \[\left[ {x - \dfrac{x{^2}}{2}} \right] _{ - 2}^1 + \left[ {\dfrac{{{x^2}}}{2} - x} \right] _1^4\]
Now, find the integration of the terms as:
\[ \Rightarrow \] \[\left[ {\left( {1 - \dfrac{1}{2}} \right) - \left( { - 2 - \dfrac{4}{2}} \right)} \right] + \left[ {\left( {\dfrac{{{4^2}}}{2}} \right) - \left( {\dfrac{1}{2}} \right) - 1} \right] \]
\[ \Rightarrow \] \[\left[ {\dfrac{1}{2} + 4} \right] + \left[ {4 + \dfrac{1}{2}} \right] \]
\[ \Rightarrow \] \[8 + 1 = 9\] sq. units.
Hence, the graph of \[y = \left| {x - 1} \right|\] is represented as:
So, the correct answer is “Option B”.
Note: The different methods of integration include:
Integration by Substitution: To find the integration of a function, thus we can find the integration by introducing a new independent variable. This method is called Integration by Substitution.
A.Integration by Parts: Integration by parts requires a special technique for integration of a function, where the integrand function is the multiple of two or more functions.
B.Integration Using Trigonometric Identities: In the integration of a function, if the integrand involves any kind of trigonometric function, then we use trigonometric identities to simplify the function that can be easily integrated.
C.Integration by Partial Fraction: a rational function is defined as the ratio of two polynomials which can be expressed in the form of partial fractions.
D.Integration of Some particular function: Integration of some particular function involves some important formulae of integration that can be applied to make other integration into the standard form of the integrand.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

