
Six boys and six girls are to sit in a row at random. The probability that boys and girls sit alternately is
$
A.{\text{ }}\dfrac{{6! \times {}^7{P_6}}}{{12!}} \\
B.{\text{ }}\dfrac{{6!6!}}{{12!}} \\
C.{\text{ }}\dfrac{{2 \times 6!6!}}{{12!}} \\
D.{\text{ }}\dfrac{{2 \times 6!}}{{12!}} \\
$
Answer
592.5k+ views
Hint: First find out how many combinations of boys and girls sitting alternately are possible. Out of all the possible combinations girls would have 6! Ways because no. of girls are 6. But boys will have 7! (by using the concept of permutation) ways because the last boy can have two places either before the first girl or after the last girl and then accordingly calculate the probability.
Complete step-by-step answer:
Total ways in which all the 12 people sit : 12!
$n\left( s \right) = 12!$ ways where S is sample space.
E= Event of the girls and boys to be seated alternately.
6 girls can be seated in 6! ways.
${G_1},{G_2},{G_3},{G_{_4}},{G_5},{G_6}$
There are 7 alternate places for 6 boys.
6 boys can be seated in 7 places in ${}^7{P_6}$ ways.
$\therefore $ $n\left( E \right) = {\text{ 6! }} \times {}^7{{\text{P}}_6}$
$\therefore $ The required probability = $\dfrac{{n\left( E \right)}}{{n\left( S \right)}}$= \[\dfrac{{6!\; \times {}^7{P_6}}}{{12!}}\]
The correct option is A.
Note: The formula for calculating the permutation is given by \[P(n,r) = \dfrac{{n!}}{{(n - r)!}}\], where n is the total no. of object in the set, r is the no. of choosing object from the set.
Complete step-by-step answer:
Total ways in which all the 12 people sit : 12!
$n\left( s \right) = 12!$ ways where S is sample space.
E= Event of the girls and boys to be seated alternately.
6 girls can be seated in 6! ways.
${G_1},{G_2},{G_3},{G_{_4}},{G_5},{G_6}$
There are 7 alternate places for 6 boys.
6 boys can be seated in 7 places in ${}^7{P_6}$ ways.
$\therefore $ $n\left( E \right) = {\text{ 6! }} \times {}^7{{\text{P}}_6}$
$\therefore $ The required probability = $\dfrac{{n\left( E \right)}}{{n\left( S \right)}}$= \[\dfrac{{6!\; \times {}^7{P_6}}}{{12!}}\]
The correct option is A.
Note: The formula for calculating the permutation is given by \[P(n,r) = \dfrac{{n!}}{{(n - r)!}}\], where n is the total no. of object in the set, r is the no. of choosing object from the set.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

