How do you simplify ${m^4}.2{m^{ - 3}}$ and write it using only positive exponents?
Answer
Verified
438.3k+ views
Hint: In this question, we are given two exponents having the same base “m” in multiplication with each other and we have to simplify this expression, that is, we have to write it easily and understandably. So , we can solve the question by using the law which states that when two numbers having the same base but different powers are multiplied then keeping the base same, we add the powers, that is, ${x^a} \times {x^b} = {x^{a + b}}$.
Complete step-by-step solution:
We are given that ${m^4}.2{m^{ - 3}}$
Keeping the base same, we add the powers –
$
{m^4}2{m^{ - 3}} = 2{m^{4 - 3}} \\
\Rightarrow {m^4}2{m^{ - 3}} = 2m \\
$
The power of m is equal to 1 and it is a positive number.
Hence the simplified form of ${m^4}2{m^{ - 3}}$ is $n$ .
Note: We know that when the exponent is negative then we write the number as the reciprocal of the given exponent to convert it into a positive exponent, that is, ${a^{ - x}} = \dfrac{1}{{{a^x}}}$ . So, $2{m^{ - 3}}$ can be written as $\dfrac{2}{{{m^3}}}$ . Now, the given expression becomes $\dfrac{{2{m^4}}}{{{m^3}}}$ . Thus, the expression obtained is a fraction and we know that for simplifying a fraction we write the numerator and the denominator as a product of its prime factors
After doing the prime factorization of the numerator and the denominator, we cancel out the common factors until there are no common factors present between the numerator and the denominator.
${m^4}$ can be written as $m \times m \times m \times m$
And ${m^3}$ can be written as \[m \times m \times m\]
Thus we see that the numerator and the denominator have $m \times m \times m$ or ${m^3}$ as common, so it is canceled out and we get –
$\dfrac{{2{m^4}}}{{{m^3}}} = 2m$
Complete step-by-step solution:
We are given that ${m^4}.2{m^{ - 3}}$
Keeping the base same, we add the powers –
$
{m^4}2{m^{ - 3}} = 2{m^{4 - 3}} \\
\Rightarrow {m^4}2{m^{ - 3}} = 2m \\
$
The power of m is equal to 1 and it is a positive number.
Hence the simplified form of ${m^4}2{m^{ - 3}}$ is $n$ .
Note: We know that when the exponent is negative then we write the number as the reciprocal of the given exponent to convert it into a positive exponent, that is, ${a^{ - x}} = \dfrac{1}{{{a^x}}}$ . So, $2{m^{ - 3}}$ can be written as $\dfrac{2}{{{m^3}}}$ . Now, the given expression becomes $\dfrac{{2{m^4}}}{{{m^3}}}$ . Thus, the expression obtained is a fraction and we know that for simplifying a fraction we write the numerator and the denominator as a product of its prime factors
After doing the prime factorization of the numerator and the denominator, we cancel out the common factors until there are no common factors present between the numerator and the denominator.
${m^4}$ can be written as $m \times m \times m \times m$
And ${m^3}$ can be written as \[m \times m \times m\]
Thus we see that the numerator and the denominator have $m \times m \times m$ or ${m^3}$ as common, so it is canceled out and we get –
$\dfrac{{2{m^4}}}{{{m^3}}} = 2m$
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
A house design given on an isometric dot sheet in an class 9 maths CBSE
Trending doubts
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
The president of the constituent assembly was A Dr class 9 social science CBSE
What is the full form of pH?
On an outline map of India show its neighbouring c class 9 social science CBSE