
How do you simplify \[\left( {\dfrac{{\sin x}}{{1 - \cos x}}} \right) + \left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)\]?
Answer
525.9k+ views
Hint: To simplify this we take LCM of two fraction. We use the algebraic identity, that is \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]. We also know the Pythagoras relation between sine and cosine, that is \[{\sin ^2}x + {\cos ^2}x = 1\]. Using these identities we can solve this. We also need the reciprocal relation of six trigonometric functions.
Complete step-by-step solution:
Given, \[\left( {\dfrac{{\sin x}}{{1 - \cos x}}} \right) + \left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)\]
We know that LCM is \[\sin x(1 - \cos x)\] Simplifying we have,
\[ \Rightarrow \dfrac{{\left( {\sin x \times \sin x} \right) + \left( {\left( {1 - \cos x} \right) \times \left( {1 - \cos x} \right)} \right)}}{{\sin x\left( {1 - \cos x} \right)}}\]
Multiplying we have,
\[ \Rightarrow \dfrac{{{{\sin }^2}x + {{\left( {1 - \cos x} \right)}^2}}}{{\sin x\left( {1 - \cos x} \right)}}\]
We have identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\], applying this to the term \[{\left( {1 - \cos x} \right)^2}\],Where \[a = 1\] and \[b = \cos x\] then we have,
\[ \Rightarrow \dfrac{{{{\sin }^2}x + {1^2} - 2\cos x + \cos {x^2}}}{{\sin x\left( {1 - \cos x} \right)}}\]
\[ \Rightarrow \dfrac{{{{\sin }^2}x + \cos {x^2} + 1 - 2\cos x}}{{\sin x\left( {1 - \cos x} \right)}}\]
But we have the Pythagoras identity \[{\sin ^2}x + {\cos ^2}x = 1\],
\[ \Rightarrow \dfrac{{1 + 1 - 2\cos x}}{{\sin x\left( {1 - \cos x} \right)}}\]
\[ \Rightarrow \dfrac{{2 - 2\cos x}}{{\sin x\left( {1 - \cos x} \right)}}\]
Taking 2 common in the numerator we have,
\[ \Rightarrow \dfrac{{2\left( {1 - \cos x} \right)}}{{\sin x\left( {1 - \cos x} \right)}}\]
Cancelling the term we have
\[ \Rightarrow \dfrac{2}{{\sin x}}\]
But we know that the reciprocal of sine is cosecant then we have
\[ \Rightarrow 2\csc x\].
Hence, we have \[\left( {\dfrac{{\sin x}}{{1 - \cos x}}} \right) + \left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right) = 2\csc x\]. This is the required answer.
Note: Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively.
Also know the relation between secant and tangent. That is
\[{\sec ^2}x - {\tan ^2}x = 1\].
We also know the relation between cosecant and cotangent. That is
\[{\csc ^2}x - {\cot ^2}x = 1\]
Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Complete step-by-step solution:
Given, \[\left( {\dfrac{{\sin x}}{{1 - \cos x}}} \right) + \left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right)\]
We know that LCM is \[\sin x(1 - \cos x)\] Simplifying we have,
\[ \Rightarrow \dfrac{{\left( {\sin x \times \sin x} \right) + \left( {\left( {1 - \cos x} \right) \times \left( {1 - \cos x} \right)} \right)}}{{\sin x\left( {1 - \cos x} \right)}}\]
Multiplying we have,
\[ \Rightarrow \dfrac{{{{\sin }^2}x + {{\left( {1 - \cos x} \right)}^2}}}{{\sin x\left( {1 - \cos x} \right)}}\]
We have identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\], applying this to the term \[{\left( {1 - \cos x} \right)^2}\],Where \[a = 1\] and \[b = \cos x\] then we have,
\[ \Rightarrow \dfrac{{{{\sin }^2}x + {1^2} - 2\cos x + \cos {x^2}}}{{\sin x\left( {1 - \cos x} \right)}}\]
\[ \Rightarrow \dfrac{{{{\sin }^2}x + \cos {x^2} + 1 - 2\cos x}}{{\sin x\left( {1 - \cos x} \right)}}\]
But we have the Pythagoras identity \[{\sin ^2}x + {\cos ^2}x = 1\],
\[ \Rightarrow \dfrac{{1 + 1 - 2\cos x}}{{\sin x\left( {1 - \cos x} \right)}}\]
\[ \Rightarrow \dfrac{{2 - 2\cos x}}{{\sin x\left( {1 - \cos x} \right)}}\]
Taking 2 common in the numerator we have,
\[ \Rightarrow \dfrac{{2\left( {1 - \cos x} \right)}}{{\sin x\left( {1 - \cos x} \right)}}\]
Cancelling the term we have
\[ \Rightarrow \dfrac{2}{{\sin x}}\]
But we know that the reciprocal of sine is cosecant then we have
\[ \Rightarrow 2\csc x\].
Hence, we have \[\left( {\dfrac{{\sin x}}{{1 - \cos x}}} \right) + \left( {\dfrac{{1 - \cos x}}{{\sin x}}} \right) = 2\csc x\]. This is the required answer.
Note: Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively.
Also know the relation between secant and tangent. That is
\[{\sec ^2}x - {\tan ^2}x = 1\].
We also know the relation between cosecant and cotangent. That is
\[{\csc ^2}x - {\cot ^2}x = 1\]
Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

