How do you simplify \[\left( 7-6i \right)\left( 2-3i \right)\]?
Answer
Verified
435.9k+ views
Hint: We first explain the meaning of the process ‘FOIL’. We multiply the terms according to their positions. There are four multiplications to be done. We complete all four multiplications according to the previously mentioned process.
Complete step by step solution:
We have been given multiplication of two linear equations. We have to do the breakings of the polynomials in order of FOIL. The word FOIL stands for First-Outside-Inside-Last. It is a technique to distribute the multiplication of polynomials.
There are two terms in each polynomial.
We start by multiplying the first terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and 2.
The multiplication gives a result of $7\times 2=14$.
We now multiply the outside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and $-3i$.
The multiplication gives a result of $7\times \left( -3i \right)=-21i$.
Then we multiply the inside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and 2.
The multiplication gives the result of $\left( -6i \right)\times 2=-12i$.
We end by multiplying the last terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and $-3i$.
The multiplication gives the result of $\left( -6i \right)\times \left( -3i \right)=18{{i}^{2}}$.
Now we add all the terms to get $\left( 7-6i \right)\left( 2-3i \right)=14-21i-12i+18{{i}^{2}}$.
We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We place the values in the multiplication.
The final solution is $14-21i-12i+18{{i}^{2}}=14-33i-18=-33i-4$
Therefore, multiplied value of \[\left( 7-6i \right)\left( 2-3i \right)\] is $-33i-4$.
Note: We can find that in the multiplication the real numbers are created from the multiplication of two real or two imaginary numbers and the imaginary numbers are created from the multiplication of mixed numbers.
Complete step by step solution:
We have been given multiplication of two linear equations. We have to do the breakings of the polynomials in order of FOIL. The word FOIL stands for First-Outside-Inside-Last. It is a technique to distribute the multiplication of polynomials.
There are two terms in each polynomial.
We start by multiplying the first terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and 2.
The multiplication gives a result of $7\times 2=14$.
We now multiply the outside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are 7 and $-3i$.
The multiplication gives a result of $7\times \left( -3i \right)=-21i$.
Then we multiply the inside terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and 2.
The multiplication gives the result of $\left( -6i \right)\times 2=-12i$.
We end by multiplying the last terms of \[\left( 7-6i \right)\] and \[\left( 2-3i \right)\]. The terms are $-6i$ and $-3i$.
The multiplication gives the result of $\left( -6i \right)\times \left( -3i \right)=18{{i}^{2}}$.
Now we add all the terms to get $\left( 7-6i \right)\left( 2-3i \right)=14-21i-12i+18{{i}^{2}}$.
We have the relations for imaginary $i$ where ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$. We place the values in the multiplication.
The final solution is $14-21i-12i+18{{i}^{2}}=14-33i-18=-33i-4$
Therefore, multiplied value of \[\left( 7-6i \right)\left( 2-3i \right)\] is $-33i-4$.
Note: We can find that in the multiplication the real numbers are created from the multiplication of two real or two imaginary numbers and the imaginary numbers are created from the multiplication of mixed numbers.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE