Answer
Verified
424.2k+ views
Hint: In this problem, we have to find the square of a complex number. This can also be done by multiplying the complex number by itself. After multiplication, we shall group all the terms and further simplify them. Then we will use the basic properties of complex numbers such as the different values of iota when it is raised to various powers.
Complete step-by-step answer:
In order to simplify the given expression, we must have prior knowledge of complex numbers. A complex number is of the form, $x+\iota y$. It comprises two parts. One is the real number part which lies on the x-axis of the cartesian plane and the other is a complex number part which lies on the y-axis of the cartesian plane.
The expression given can also be written as:
${{\left( 2+5\iota \right)}^{2}}=\left( 2+5\iota \right)\left( 2+5\iota \right)$
Thus, we shall multiply the complex function by itself.
$\Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+10\iota +10\iota +25{{\iota }^{2}}$
Adding the like terms of iota, we get
$\Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+20\iota +25{{\iota }^{2}}$
There are predefined values assigned to iota when it is raised to certain powers. They are as follows.
${{\iota }^{1}}=\iota $
${{\iota }^{2}}=-1$
${{\iota }^{3}}=-\iota $
${{\iota }^{4}}=1$
From the above results, we see that ${{\iota }^{2}}=-1$. Substituting this value in our equation, we get
$\Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+20\iota +25\left( -1 \right)$
$\begin{align}
& \Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+20\iota -25 \\
& \Rightarrow {{\left( 2+5\iota \right)}^{2}}=-21+20\iota \\
\end{align}$
Therefore, the given expression ${{\left( 2+5\iota \right)}^{2}}$ is simplified to $-21+20\iota $.
Note:
The generalized rule for iota raised to any power is that iota raised to the power of 4 or multiples of 4 is equal to 1. Otherwise, the value of iota in terms of multiples 4 is given as, ${{\iota }^{4k+1}}=\iota $, ${{\iota }^{4k+2}}=-1$ and ${{\iota }^{4k+3}}=-\iota $ where $k$ is a constant. Using this, we can easily find the value of iota even when its power is very large natural numbers.
Complete step-by-step answer:
In order to simplify the given expression, we must have prior knowledge of complex numbers. A complex number is of the form, $x+\iota y$. It comprises two parts. One is the real number part which lies on the x-axis of the cartesian plane and the other is a complex number part which lies on the y-axis of the cartesian plane.
The expression given can also be written as:
${{\left( 2+5\iota \right)}^{2}}=\left( 2+5\iota \right)\left( 2+5\iota \right)$
Thus, we shall multiply the complex function by itself.
$\Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+10\iota +10\iota +25{{\iota }^{2}}$
Adding the like terms of iota, we get
$\Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+20\iota +25{{\iota }^{2}}$
There are predefined values assigned to iota when it is raised to certain powers. They are as follows.
${{\iota }^{1}}=\iota $
${{\iota }^{2}}=-1$
${{\iota }^{3}}=-\iota $
${{\iota }^{4}}=1$
From the above results, we see that ${{\iota }^{2}}=-1$. Substituting this value in our equation, we get
$\Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+20\iota +25\left( -1 \right)$
$\begin{align}
& \Rightarrow {{\left( 2+5\iota \right)}^{2}}=4+20\iota -25 \\
& \Rightarrow {{\left( 2+5\iota \right)}^{2}}=-21+20\iota \\
\end{align}$
Therefore, the given expression ${{\left( 2+5\iota \right)}^{2}}$ is simplified to $-21+20\iota $.
Note:
The generalized rule for iota raised to any power is that iota raised to the power of 4 or multiples of 4 is equal to 1. Otherwise, the value of iota in terms of multiples 4 is given as, ${{\iota }^{4k+1}}=\iota $, ${{\iota }^{4k+2}}=-1$ and ${{\iota }^{4k+3}}=-\iota $ where $k$ is a constant. Using this, we can easily find the value of iota even when its power is very large natural numbers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE