Answer

Verified

406.2k+ views

Hint: Write the equation of the plane in Cartesian form and the use distance formula of a point from a plane.

The given plane equation is $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$.

The Cartesian form the plane equation is:

$ \Rightarrow 3x + 4y - 12z + 13 = 0$

We have to compare the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from this plane.

We know that the distance of a point from a plane is given by the formula:

$ \Rightarrow D = \left| {\dfrac{{ax + by + cz + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|$

Using this formula, the distance of point $\left( {1,1,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:

$

\Rightarrow D = \left| {\dfrac{{3\left( 1 \right) + 4\left( 1 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\

\Rightarrow D = \dfrac{{\left| {3 + 4 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\

\Rightarrow D = \dfrac{8}{{13}} \\

$

Similarly, the distance of point $\left( { - 3,0,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:

$

\Rightarrow D = \left| {\dfrac{{3\left( { - 3} \right) + 4\left( 0 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\

\Rightarrow D = \dfrac{{\left| { - 9 + 0 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\

\Rightarrow D = \dfrac{{\left| { - 8} \right|}}{{\sqrt {169} }}, \\

$

$ \Rightarrow D = \dfrac{8}{{13}}$

Therefore, the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$ are equal.

Note: In the distance formula used above, we used modulus sign just to ensure that the distance never comes out as negative. If we are getting its value negative, modulus will turn it positive.

The given plane equation is $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$.

The Cartesian form the plane equation is:

$ \Rightarrow 3x + 4y - 12z + 13 = 0$

We have to compare the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from this plane.

We know that the distance of a point from a plane is given by the formula:

$ \Rightarrow D = \left| {\dfrac{{ax + by + cz + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|$

Using this formula, the distance of point $\left( {1,1,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:

$

\Rightarrow D = \left| {\dfrac{{3\left( 1 \right) + 4\left( 1 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\

\Rightarrow D = \dfrac{{\left| {3 + 4 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\

\Rightarrow D = \dfrac{8}{{13}} \\

$

Similarly, the distance of point $\left( { - 3,0,1} \right)$from the plane $3x + 4y - 12z + 13 = 0$is:

$

\Rightarrow D = \left| {\dfrac{{3\left( { - 3} \right) + 4\left( 0 \right) - 12\left( 1 \right) + 13}}{{\sqrt {{3^2} + {4^2} + {{\left( {12} \right)}^2}} }}} \right|, \\

\Rightarrow D = \dfrac{{\left| { - 9 + 0 - 12 + 13} \right|}}{{\sqrt {25 + 144} }}, \\

\Rightarrow D = \dfrac{{\left| { - 8} \right|}}{{\sqrt {169} }}, \\

$

$ \Rightarrow D = \dfrac{8}{{13}}$

Therefore, the distance of points $\left( {1,1,1} \right)$ and $\left( { - 3,0,1} \right)$ from plane $\overrightarrow r .\left( {3\widehat i + 4\widehat j - 12\widehat k} \right) + 13 = 0$ are equal.

Note: In the distance formula used above, we used modulus sign just to ensure that the distance never comes out as negative. If we are getting its value negative, modulus will turn it positive.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Which neighbouring country does not share a boundary class 9 social science CBSE

The highest peak in Annamalai hills is aAnaimudi bDodabetta class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

The highest peak of South India is A Doda Betta B Guru class 8 social science CBSE

Banaras Hindu University was founded by A CR Das B class 12 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which is the largest saltwater lake in India A Chilika class 8 social science CBSE