Answer

Verified

449.1k+ views

Hint: Here to show that the 3 points are collinear we have to find the vectors of the given points and calculate its magnitude. If the points are collinear it means all points lie in a straight line.

Complete step-by-step answer:

As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.

Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear

If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]

First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]

$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$

$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$

$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$

$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$

$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$

$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$

Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]

Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $

$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $

Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $

$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $

Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $

$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $

$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $

Now put the magnitude of these vectors In condition of collinearity.

$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $

$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $

Now you can easily see condition of collinearity satisfy

\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]

Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear

Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.

Complete step-by-step answer:

As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.

Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear

If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]

First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]

$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$

$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$

$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$

$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$

$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$

$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$

Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]

Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $

$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $

Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $

$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $

Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $

$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $

$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $

Now put the magnitude of these vectors In condition of collinearity.

$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $

$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $

Now you can easily see condition of collinearity satisfy

\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]

Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear

Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE