Answer
Verified
493.5k+ views
Hint: Here to show that the 3 points are collinear we have to find the vectors of the given points and calculate its magnitude. If the points are collinear it means all points lie in a straight line.
Complete step-by-step answer:
As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.
Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]
First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]
$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$
$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$
$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$
$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$
Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]
Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $
$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now put the magnitude of these vectors In condition of collinearity.
$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now you can easily see condition of collinearity satisfy
\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]
Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.
Complete step-by-step answer:
As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.
Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]
First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]
$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$
$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$
$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$
$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$
Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]
Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $
$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now put the magnitude of these vectors In condition of collinearity.
$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now you can easily see condition of collinearity satisfy
\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]
Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it