
Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear.
Answer
619.8k+ views
Hint: Here to show that the 3 points are collinear we have to find the vectors of the given points and calculate its magnitude. If the points are collinear it means all points lie in a straight line.
Complete step-by-step answer:
As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.
Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]
First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]
$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$
$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$
$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$
$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$
Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]
Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $
$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now put the magnitude of these vectors In condition of collinearity.
$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now you can easily see condition of collinearity satisfy
\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]
Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.
Complete step-by-step answer:
As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.
Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]
First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]
$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$
$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$
$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$
$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$
Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]
Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $
$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now put the magnitude of these vectors In condition of collinearity.
$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now you can easily see condition of collinearity satisfy
\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]
Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

