Show that the locus of the poles of chords which subtend a constant angle \[\alpha \] at the vertex is the curve \[{{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}\alpha \left( {{y}^{2}}-4ax \right)\].
Answer
Verified
503.7k+ views
Hint: The equation of chord joining the points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as \[\left( y-2a{{t}_{2}} \right)\left( {{t}_{1}}+{{t}_{2}} \right)=2\left( x-at_{2}^{2} \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Complete step-by-step answer:
We will consider the equation of parabola to be \[{{y}^{2}}=4ax\].
Now , we will consider two points on the parabola , given by \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We know that the equation of line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as
\[\left( y-{{y}_{2}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\times \left( x-{{x}_{2}} \right)\]
So, the equation of the chord joining \[A\] and \[B\] is given as
\[\left( y-2a{{t}_{2}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\times \left( x-at_{2}^{2} \right)\]
\[\Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\times \left( x-at_{2}^{2} \right)\]
\[\Rightarrow \left( y-2a{{t}_{2}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{2}^{2} \right)....\left( i \right)\]
Now, we know the vertex of the parabola is at \[\left( 0,0 \right)\].
And we also know that the slope of line joining the points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by \[m=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\].
So , the slope of the line joining \[A\] to vertex is given by
\[{{m}_{1}}=\dfrac{2a{{t}_{1}}-0}{at_{1}^{2}-0}\]
\[{{m}_{1}}=\dfrac{2}{{{t}_{1}}}\]
And the slope of the line joining \[B\] to vertex is given by
\[{{m}_{2}}=\dfrac{2a{{t}_{2}}-0}{at_{2}^{2}-0}\]
\[{{m}_{2}}=\dfrac{2}{{{t}_{2}}}\]
Now , we know if \[\theta \] is the angle between two lines with slope \[{{m}_{1}}\]and \[{{m}_{2}}\], then,
\[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]
Now, in the question it is given that the chord subtends angle \[\alpha \] at the vertex.
So, \[\tan \alpha =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}......(ii)\]
Now , we will substitute the values of \[{{m}_{1}}\]and \[{{m}_{2}}\] in equation\[(ii)\].
On substituting the values of \[{{m}_{1}}\]and \[{{m}_{2}}\]in equation\[(ii)\], we get
\[\tan \alpha =\dfrac{\dfrac{2}{{{t}_{2}}}-\dfrac{2}{{{t}_{1}}}}{1+\dfrac{2}{{{t}_{2}}}\times \dfrac{2}{{{t}_{1}}}}\]
\[\Rightarrow \tan \alpha =\dfrac{2\left( {{t}_{1}}-{{t}_{2}} \right)}{{{t}_{1}}{{t}_{2}}+4}\]
\[\Rightarrow 2\left( {{t}_{1}}-{{t}_{2}} \right)=\tan \alpha \left( {{t}_{1}}{{t}_{2}}+4 \right)....\left( iii \right)\]
Now, we want to find the locus of the pole.
Let the pole be \[M\left( h,k \right)\].
We know, when the pole of a chord is \[\left( {{x}_{1}},{{y}_{1}} \right)\], then the equation of chord is given as
\[y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)\]
Now, since \[\left( h,k \right)\] is the pole, so the equation of chord is given as
\[yk=2ax+2ah....\left( iv \right)\]
Now , we know the lines represented by equation \[\left( i \right)\] and equation \[\left( iv \right)\] are the same.
We also know that if two equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]are same then , \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Comparing equation \[\left( i \right)\]with equation \[\left( iv \right)\], we have
\[\dfrac{{{t}_{1}}+{{t}_{2}}}{k}=\dfrac{2}{2a}=\dfrac{2a{{t}_{1}}{{t}_{2}}}{2ah}\]
So , \[h=a{{t}_{1}}{{t}_{2}}\]and \[k=a\left( {{t}_{1}}+{{t}_{2}} \right).....\left( v \right)\]
Now, we know
\[{{t}_{1}}-{{t}_{2}}=\sqrt{{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}}\]
Substituting in \[\left( ii \right)\], we get
\[2\sqrt{{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}}=\tan \alpha \left( {{t}_{1}}{{t}_{2}}+4 \right).....\left( vi \right)\]
Substituting \[h=a{{t}_{1}}{{t}_{2}}\] and \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\] we get
\[2\sqrt{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{4h}{a}}=\tan \alpha \left( \dfrac{h}{a}+4 \right)\]
\[\Rightarrow \dfrac{2}{a}\sqrt{{{k}^{2}}-4ah}=\dfrac{\tan \alpha }{a}\left( h+4a \right)\]
\[\Rightarrow 2\sqrt{{{k}^{2}}-4ah}=\tan \alpha \left( h+4a \right)\]
Squaring both sides, we get
\[4\left( {{k}^{2}}-4ah \right)={{\tan }^{2}}\alpha {{\left( h+4a \right)}^{2}}\]
\[\Rightarrow {{\left( h+4a \right)}^{2}}=4{{\cot }^{2}}\alpha \left( {{k}^{2}}-4ah \right)........(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[{{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}\alpha \left( {{y}^{2}}-4ax \right)\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Complete step-by-step answer:
We will consider the equation of parabola to be \[{{y}^{2}}=4ax\].
Now , we will consider two points on the parabola , given by \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We know that the equation of line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as
\[\left( y-{{y}_{2}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\times \left( x-{{x}_{2}} \right)\]
So, the equation of the chord joining \[A\] and \[B\] is given as
\[\left( y-2a{{t}_{2}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\times \left( x-at_{2}^{2} \right)\]
\[\Rightarrow \left( y-2a{{t}_{2}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\times \left( x-at_{2}^{2} \right)\]
\[\Rightarrow \left( y-2a{{t}_{2}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{2}^{2} \right)....\left( i \right)\]
Now, we know the vertex of the parabola is at \[\left( 0,0 \right)\].
And we also know that the slope of line joining the points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left( {{x}_{2}},{{y}_{2}} \right)\] is given by \[m=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\].
So , the slope of the line joining \[A\] to vertex is given by
\[{{m}_{1}}=\dfrac{2a{{t}_{1}}-0}{at_{1}^{2}-0}\]
\[{{m}_{1}}=\dfrac{2}{{{t}_{1}}}\]
And the slope of the line joining \[B\] to vertex is given by
\[{{m}_{2}}=\dfrac{2a{{t}_{2}}-0}{at_{2}^{2}-0}\]
\[{{m}_{2}}=\dfrac{2}{{{t}_{2}}}\]
Now , we know if \[\theta \] is the angle between two lines with slope \[{{m}_{1}}\]and \[{{m}_{2}}\], then,
\[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]
Now, in the question it is given that the chord subtends angle \[\alpha \] at the vertex.
So, \[\tan \alpha =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}......(ii)\]
Now , we will substitute the values of \[{{m}_{1}}\]and \[{{m}_{2}}\] in equation\[(ii)\].
On substituting the values of \[{{m}_{1}}\]and \[{{m}_{2}}\]in equation\[(ii)\], we get
\[\tan \alpha =\dfrac{\dfrac{2}{{{t}_{2}}}-\dfrac{2}{{{t}_{1}}}}{1+\dfrac{2}{{{t}_{2}}}\times \dfrac{2}{{{t}_{1}}}}\]
\[\Rightarrow \tan \alpha =\dfrac{2\left( {{t}_{1}}-{{t}_{2}} \right)}{{{t}_{1}}{{t}_{2}}+4}\]
\[\Rightarrow 2\left( {{t}_{1}}-{{t}_{2}} \right)=\tan \alpha \left( {{t}_{1}}{{t}_{2}}+4 \right)....\left( iii \right)\]
Now, we want to find the locus of the pole.
Let the pole be \[M\left( h,k \right)\].
We know, when the pole of a chord is \[\left( {{x}_{1}},{{y}_{1}} \right)\], then the equation of chord is given as
\[y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)\]
Now, since \[\left( h,k \right)\] is the pole, so the equation of chord is given as
\[yk=2ax+2ah....\left( iv \right)\]
Now , we know the lines represented by equation \[\left( i \right)\] and equation \[\left( iv \right)\] are the same.
We also know that if two equations \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\]are same then , \[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Comparing equation \[\left( i \right)\]with equation \[\left( iv \right)\], we have
\[\dfrac{{{t}_{1}}+{{t}_{2}}}{k}=\dfrac{2}{2a}=\dfrac{2a{{t}_{1}}{{t}_{2}}}{2ah}\]
So , \[h=a{{t}_{1}}{{t}_{2}}\]and \[k=a\left( {{t}_{1}}+{{t}_{2}} \right).....\left( v \right)\]
Now, we know
\[{{t}_{1}}-{{t}_{2}}=\sqrt{{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}}\]
Substituting in \[\left( ii \right)\], we get
\[2\sqrt{{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}}=\tan \alpha \left( {{t}_{1}}{{t}_{2}}+4 \right).....\left( vi \right)\]
Substituting \[h=a{{t}_{1}}{{t}_{2}}\] and \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\] we get
\[2\sqrt{{{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{4h}{a}}=\tan \alpha \left( \dfrac{h}{a}+4 \right)\]
\[\Rightarrow \dfrac{2}{a}\sqrt{{{k}^{2}}-4ah}=\dfrac{\tan \alpha }{a}\left( h+4a \right)\]
\[\Rightarrow 2\sqrt{{{k}^{2}}-4ah}=\tan \alpha \left( h+4a \right)\]
Squaring both sides, we get
\[4\left( {{k}^{2}}-4ah \right)={{\tan }^{2}}\alpha {{\left( h+4a \right)}^{2}}\]
\[\Rightarrow {{\left( h+4a \right)}^{2}}=4{{\cot }^{2}}\alpha \left( {{k}^{2}}-4ah \right)........(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[{{\left( x+4a \right)}^{2}}=4{{\cot }^{2}}\alpha \left( {{y}^{2}}-4ax \right)\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE