
Show that the function defined by g(x)=x-[x] is discontinuous at all integral points.
Here [x] denotes the greatest integer less than or equal to x.
Answer
621k+ views
Hint-To solve these types of problems calculate the value of LHL and RHL and show
that the value of $LHL \ne RHL$which means to say that they are discontinuous.
The given function is g(x)=x-[x]
In this function let us consider an integer n and solve it
On substituting the value of n in the equation, we get
g(n)=n-[n]=n-n=0
Now let us take the LHL and RHL of this equation,
We get LHL at x=n=$\mathop {\lim }\limits_{x \to {n^ - }} g(x) = \mathop {\lim }\limits_{x \to
{n^ - }} (x - [x]) = n - (n - 1) = 1$
RHL at x=n=$\mathop {\lim }\limits_{x \to {n^ + }} g(x) = \mathop {\lim }\limits_{x \to
{n^ + }} (x - [x]) = n - n = 0$
So, from this we can clearly observe that the value of $LHL \ne RHL$
If, for a function $LHL \ne RHL$, then we can say that the function is discontinuous
So, we can say that g(x)=x-[x] is discontinuous at all integral points
Note: If a similar type of question is asked to show that the functions are continuous then
show that LHL=RHL , which means to say that the function is continuous.
that the value of $LHL \ne RHL$which means to say that they are discontinuous.
The given function is g(x)=x-[x]
In this function let us consider an integer n and solve it
On substituting the value of n in the equation, we get
g(n)=n-[n]=n-n=0
Now let us take the LHL and RHL of this equation,
We get LHL at x=n=$\mathop {\lim }\limits_{x \to {n^ - }} g(x) = \mathop {\lim }\limits_{x \to
{n^ - }} (x - [x]) = n - (n - 1) = 1$
RHL at x=n=$\mathop {\lim }\limits_{x \to {n^ + }} g(x) = \mathop {\lim }\limits_{x \to
{n^ + }} (x - [x]) = n - n = 0$
So, from this we can clearly observe that the value of $LHL \ne RHL$
If, for a function $LHL \ne RHL$, then we can say that the function is discontinuous
So, we can say that g(x)=x-[x] is discontinuous at all integral points
Note: If a similar type of question is asked to show that the functions are continuous then
show that LHL=RHL , which means to say that the function is continuous.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

