
Show that the function defined by g(x)=x-[x] is discontinuous at all integral points.
Here [x] denotes the greatest integer less than or equal to x.
Answer
608.1k+ views
Hint-To solve these types of problems calculate the value of LHL and RHL and show
that the value of $LHL \ne RHL$which means to say that they are discontinuous.
The given function is g(x)=x-[x]
In this function let us consider an integer n and solve it
On substituting the value of n in the equation, we get
g(n)=n-[n]=n-n=0
Now let us take the LHL and RHL of this equation,
We get LHL at x=n=$\mathop {\lim }\limits_{x \to {n^ - }} g(x) = \mathop {\lim }\limits_{x \to
{n^ - }} (x - [x]) = n - (n - 1) = 1$
RHL at x=n=$\mathop {\lim }\limits_{x \to {n^ + }} g(x) = \mathop {\lim }\limits_{x \to
{n^ + }} (x - [x]) = n - n = 0$
So, from this we can clearly observe that the value of $LHL \ne RHL$
If, for a function $LHL \ne RHL$, then we can say that the function is discontinuous
So, we can say that g(x)=x-[x] is discontinuous at all integral points
Note: If a similar type of question is asked to show that the functions are continuous then
show that LHL=RHL , which means to say that the function is continuous.
that the value of $LHL \ne RHL$which means to say that they are discontinuous.
The given function is g(x)=x-[x]
In this function let us consider an integer n and solve it
On substituting the value of n in the equation, we get
g(n)=n-[n]=n-n=0
Now let us take the LHL and RHL of this equation,
We get LHL at x=n=$\mathop {\lim }\limits_{x \to {n^ - }} g(x) = \mathop {\lim }\limits_{x \to
{n^ - }} (x - [x]) = n - (n - 1) = 1$
RHL at x=n=$\mathop {\lim }\limits_{x \to {n^ + }} g(x) = \mathop {\lim }\limits_{x \to
{n^ + }} (x - [x]) = n - n = 0$
So, from this we can clearly observe that the value of $LHL \ne RHL$
If, for a function $LHL \ne RHL$, then we can say that the function is discontinuous
So, we can say that g(x)=x-[x] is discontinuous at all integral points
Note: If a similar type of question is asked to show that the functions are continuous then
show that LHL=RHL , which means to say that the function is continuous.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

