
Show that the equation ${x^4} - 5{x^3} + 3{x^2} + 35x - 70 = 0$ has a root between 2 and 3 and one between -2 and -3.
Answer
473.7k+ views
Hint: To approach this solution to substitute the given values in the given equation and show that at the given equation have roots between the given interval, using this information will help you to approach the solution.
Complete step-by-step solution:
With the help of a sign of function value, we will get the information about unsolved roots.
Given equation ${x^4} - 5{x^3} + 3{x^2} + 35x - 70 = 0$
Consider $f\left( x \right) = {x^4} - 5{x^3} + 3{x^2} + 35x - 70$
Then
$f\left( 2 \right) = {2^4} - 5 \times {2^3} + 3 \times {2^2} + 35 \times 2 - 70$
$f\left( 2 \right) = - 12$
And
$f\left( 3 \right) = {3^4} - 5 \times {3^3} + 3 \times {3^2} + 35 \times 3 - 70$
$f\left( 3 \right) = 8$
Since the signs of $f\left( 2 \right)$ and $f\left( 3 \right)$ are opposite,
$f\left( x \right)$ must cross x-axis at least once in the interval $\left( {2,3} \right)$
Therefore, $f\left( x \right) = 0$ must have one root between 2 and 3.
Similarly,
$f\left( { - 2} \right) = {\left( { - 2} \right)^4} - 5{\left( { - 2} \right)^3} + 3{\left( { - 2} \right)^2} + 35\left( { - 2} \right) - 70$
$f\left( { - 2} \right) = - 72$
And
$f\left( { - 3} \right) = {\left( { - 3} \right)^4} - 5{\left( { - 3} \right)^3} + 3{\left( { - 3} \right)^2} + 35\left( { - 3} \right) - 70$
$f\left( { - 3} \right) = 68$
Since the signs of $f\left( { - 2} \right)$and $f\left( { - 3} \right)$ are opposite.
Therefore, $f\left( x \right) = 0$ must have one root between -2 and -3.
Note: This question could have been solved by finding out all the four roots of the equation and then checking for the desired result. But the process done above is the easiest to solve as we don’t need to find all the roots, we just need to find the location of the roots.
Complete step-by-step solution:
With the help of a sign of function value, we will get the information about unsolved roots.
Given equation ${x^4} - 5{x^3} + 3{x^2} + 35x - 70 = 0$
Consider $f\left( x \right) = {x^4} - 5{x^3} + 3{x^2} + 35x - 70$
Then
$f\left( 2 \right) = {2^4} - 5 \times {2^3} + 3 \times {2^2} + 35 \times 2 - 70$
$f\left( 2 \right) = - 12$
And
$f\left( 3 \right) = {3^4} - 5 \times {3^3} + 3 \times {3^2} + 35 \times 3 - 70$
$f\left( 3 \right) = 8$
Since the signs of $f\left( 2 \right)$ and $f\left( 3 \right)$ are opposite,
$f\left( x \right)$ must cross x-axis at least once in the interval $\left( {2,3} \right)$
Therefore, $f\left( x \right) = 0$ must have one root between 2 and 3.
Similarly,
$f\left( { - 2} \right) = {\left( { - 2} \right)^4} - 5{\left( { - 2} \right)^3} + 3{\left( { - 2} \right)^2} + 35\left( { - 2} \right) - 70$
$f\left( { - 2} \right) = - 72$
And
$f\left( { - 3} \right) = {\left( { - 3} \right)^4} - 5{\left( { - 3} \right)^3} + 3{\left( { - 3} \right)^2} + 35\left( { - 3} \right) - 70$
$f\left( { - 3} \right) = 68$
Since the signs of $f\left( { - 2} \right)$and $f\left( { - 3} \right)$ are opposite.
Therefore, $f\left( x \right) = 0$ must have one root between -2 and -3.
Note: This question could have been solved by finding out all the four roots of the equation and then checking for the desired result. But the process done above is the easiest to solve as we don’t need to find all the roots, we just need to find the location of the roots.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
