Answer
Verified
409.8k+ views
Hint: In this solution, we will first find the dimensional formula of permittivity and then of the electric flux. Then we will use their dimensional formula to determine the dimensions of displacement current.
Complete step by step answer:
Let us start by finding the dimensional formula of permittivity. We know that the force between two charged particles can be written as
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Then we can write the permittivity as
Now the dimensional formula that we will need in the above equation are $[F] = {M^1}{L^1}{T^{ - 2}}$, $[{q_1}] = [{q_2}] = [{A^1}{T^1}]$, $[r] = {M^0}{L^1}{T^0}$
So, we can get the dimensional formula of permittivity as
$[{\varepsilon _0}] = {M^{ - 1}}{L^{ - 3}}{T^4}{A^2}$
Now let us find the dimensional formula of electric flux using Gauss’s law, we can write that
$\phi = E.A$
Since the dimensions of the electric field can be determined from$F = qE$ as
$[E] = {M^1}{L^1}{T^{ - 4}}{A^{ - 1}}$
So, the dimensions of electric flux will be
\[[\phi ] = {M^1}{L^1}{T^{ - 3}}{A^{ - 1}} \times {L^2}\]
\[ \Rightarrow [\phi ] = {M^1}{L^3}{T^{ - 3}}{A^{ - 1}}\]
Then the dimensions of displacement current will be equal to
$\left[ {{\varepsilon _0}\dfrac{{d{\phi _\varepsilon }}}{{dt}}} \right] = {M^{ - 1}}{L^{ - 3}}{T^4}{A^2} \times {M^1}{L^3}{T^{ - 4}}{A^{ - 1}}$
$\left[ {{\varepsilon _0}\dfrac{{d{\phi _\varepsilon }}}{{dt}}} \right] = {A^1}$
Which are the dimensions of electric current. Hence we have proved that the dimension of displacement current is equal to the dimensional formula of current.
Note: Displacement current is an important aspect of Maxwell’s equations which was added later as a correction to the four Maxwell’s laws of electromagnetism. The need for it arises because of the following reasoning. When we charge a capacitor, there is a current flowing between the plates, but there is no transfer of charges in the insulating region between the capacitor plates. This contradicts the understanding of electric current and can be explained by the concept of displacement current. Therefore, we can say that there is an electric current in the region due to the changing electric flux between the capacitors.
Complete step by step answer:
Let us start by finding the dimensional formula of permittivity. We know that the force between two charged particles can be written as
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Then we can write the permittivity as
Now the dimensional formula that we will need in the above equation are $[F] = {M^1}{L^1}{T^{ - 2}}$, $[{q_1}] = [{q_2}] = [{A^1}{T^1}]$, $[r] = {M^0}{L^1}{T^0}$
So, we can get the dimensional formula of permittivity as
$[{\varepsilon _0}] = {M^{ - 1}}{L^{ - 3}}{T^4}{A^2}$
Now let us find the dimensional formula of electric flux using Gauss’s law, we can write that
$\phi = E.A$
Since the dimensions of the electric field can be determined from$F = qE$ as
$[E] = {M^1}{L^1}{T^{ - 4}}{A^{ - 1}}$
So, the dimensions of electric flux will be
\[[\phi ] = {M^1}{L^1}{T^{ - 3}}{A^{ - 1}} \times {L^2}\]
\[ \Rightarrow [\phi ] = {M^1}{L^3}{T^{ - 3}}{A^{ - 1}}\]
Then the dimensions of displacement current will be equal to
$\left[ {{\varepsilon _0}\dfrac{{d{\phi _\varepsilon }}}{{dt}}} \right] = {M^{ - 1}}{L^{ - 3}}{T^4}{A^2} \times {M^1}{L^3}{T^{ - 4}}{A^{ - 1}}$
$\left[ {{\varepsilon _0}\dfrac{{d{\phi _\varepsilon }}}{{dt}}} \right] = {A^1}$
Which are the dimensions of electric current. Hence we have proved that the dimension of displacement current is equal to the dimensional formula of current.
Note: Displacement current is an important aspect of Maxwell’s equations which was added later as a correction to the four Maxwell’s laws of electromagnetism. The need for it arises because of the following reasoning. When we charge a capacitor, there is a current flowing between the plates, but there is no transfer of charges in the insulating region between the capacitor plates. This contradicts the understanding of electric current and can be explained by the concept of displacement current. Therefore, we can say that there is an electric current in the region due to the changing electric flux between the capacitors.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE