
Show that the differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$ is homogeneous. Find the particular solution of this differential equation given that $x=1$ and $y=\dfrac{\pi }{2}$?
Answer
591k+ views
Hint: We start solving the problem by recalling the definition of the homogeneous function. We substitute $\left( mx, my \right)$ in place of $\left( x,y \right)$ in the differential equation to prove the homogeneity. We substitute $y=vx$ in the differential equations to solve it. We convert the differential equation in terms of v and x to find the general solution of the differential equation. We substitute the given values in the general solution to find the desired particular solution.
Complete step-by-step solution:
According to the problem, we have a differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$. We need to prove that the given differential equation is homogeneous and we need to find the particular solution of this differential equation at $x=1$, $y=\dfrac{\pi }{2}$.
Let us assume $f\left( x,y \right)=x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)$ ------(1).
We know that for a function $f\left( x,y \right)$ said to be homogeneous, it should satisfy the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$. Let us verify this for the function in equation (1).
We substitute $\left( mx,my \right)$ in place of $\left( x,y \right)$ in equation (1).
$\Rightarrow f\left( mx,my \right)=\left( mx \right)\dfrac{d\left( my \right)}{d\left( mx \right)}\sin \left( \dfrac{my}{mx} \right)+\left( mx \right)-\left( my \right)\sin \left( \dfrac{my}{mx} \right)$.
$\Rightarrow f\left( mx,my \right)=\left( mx \right)\dfrac{m.dy}{m.dx}\sin \left( \dfrac{y}{x} \right)+\left( mx \right)-\left( my \right)\sin \left( \dfrac{y}{x} \right)$.
$\Rightarrow f\left( mx,my \right)=m.\left( x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right) \right)$.
$\Rightarrow f\left( mx,my \right)=m.f\left( x,y \right)$ -----(2).
So, we can see that the function $f\left( x,y \right)$ satisfies the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$ of being homogeneous. So, the differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$ is homogeneous.
Now, we find the general solution for the given differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$ to find the particular solution at $x=1$, $y=\dfrac{\pi }{2}$.
$\Rightarrow x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$.
$\Rightarrow x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)=y\sin \left( \dfrac{y}{x} \right)-x$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{y\sin \left( \dfrac{y}{x} \right)-x}{x\sin \left( \dfrac{y}{x} \right)}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{y}{x} \right)\sin \left( \dfrac{y}{x} \right)-\left( \dfrac{x}{x} \right)}{\sin \left( \dfrac{y}{x} \right)}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{y}{x} \right)\sin \left( \dfrac{y}{x} \right)-1}{\sin \left( \dfrac{y}{x} \right)}$ ---------(3).
We know that the homogeneous differential equations of the form \[\dfrac{dy}{dx}=f\left( \dfrac{y}{x} \right)\] are solved by substituting $y=vx$ ------(4).
We have $y=vx$.
We differentiate with respect to ‘x’ on both sides,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( vx \right)$.
We know that the differentiation of the function of form ‘uv’ is performed as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+\dfrac{du}{dx}v$.
$\Rightarrow \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$.
We know that $\dfrac{dx}{dx}=1$.
$\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$ -------(5).
We substitute equations (4) and (5) in equation (3).
$\Rightarrow v+x\dfrac{dv}{dx}=\dfrac{v\sin v-1}{\sin v}$.
$\Rightarrow v+x\dfrac{dv}{dx}=v-\dfrac{1}{\sin v}$.
$\Rightarrow v+x\dfrac{dv}{dx}=v-\operatorname{cosec}v$.
$\Rightarrow x\dfrac{dv}{dx}=v-v-\operatorname{cosec}v$.
$\Rightarrow x\dfrac{dv}{dx}=-\operatorname{cosec}v$.
$\Rightarrow \dfrac{dv}{\operatorname{cosec}v}=-\dfrac{dx}{x}$.
$\Rightarrow \sin vdv=-\dfrac{dx}{x}$.
We perform integration on both sides.
$\Rightarrow \int{\sin vdv}=-\int{\dfrac{dx}{x}}$.
We know that $\int{\sin xdx=-\cos x+c}$ and $\int{\dfrac{dx}{x}=\log x+C}$.
$\Rightarrow -\cos v=-\log x+C$ ------(6).
We have $y=vx$ and now we find the function v.
$\Rightarrow v=\dfrac{y}{x}$ ------- (7).
We substitute equation (7) in equation (6).
$\Rightarrow -\cos \left( \dfrac{y}{x} \right)=-\log x+C$ -------(8).
Let us substitute $x=1$, $y=\dfrac{\pi }{2}$ in equation (8).
$\Rightarrow -\cos \left( \dfrac{\dfrac{\pi }{2}}{1} \right)=-\log \left( 1 \right)+C$
$\Rightarrow -\cos \left( \dfrac{\pi }{2} \right)=-0+C$.
$\Rightarrow -0=C$.
$\Rightarrow C=0$.
Let us substitute the value of C in equation (8).
We get the particular solution as $-\cos \left( \dfrac{y}{x} \right)=-\log x+0$.
$\Rightarrow -\cos \left( \dfrac{y}{x} \right)=-\log x$.
$\Rightarrow \cos \left( \dfrac{y}{x} \right)=\log x$.
The particular solution at $x=1$, $y=\dfrac{\pi }{2}$ is $\cos \left( \dfrac{y}{x} \right)=\log x$.
$\therefore$The given differential equation is homogeneous and the particular solution at at $x=1$, $y=\dfrac{\pi }{2}$ is $\cos \left( \dfrac{y}{x} \right)=\log x$.
Note: We should not say general solution without substituting the value of v. The particular solutions are found only if the values of variables ‘x’ and ‘y’ are given in the problem. We can’t just assume the value of arbitrary constant C without them. We use the process of substituting $y=vx$ only if the differential equation is proved as homogeneous.
Complete step-by-step solution:
According to the problem, we have a differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$. We need to prove that the given differential equation is homogeneous and we need to find the particular solution of this differential equation at $x=1$, $y=\dfrac{\pi }{2}$.
Let us assume $f\left( x,y \right)=x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)$ ------(1).
We know that for a function $f\left( x,y \right)$ said to be homogeneous, it should satisfy the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$. Let us verify this for the function in equation (1).
We substitute $\left( mx,my \right)$ in place of $\left( x,y \right)$ in equation (1).
$\Rightarrow f\left( mx,my \right)=\left( mx \right)\dfrac{d\left( my \right)}{d\left( mx \right)}\sin \left( \dfrac{my}{mx} \right)+\left( mx \right)-\left( my \right)\sin \left( \dfrac{my}{mx} \right)$.
$\Rightarrow f\left( mx,my \right)=\left( mx \right)\dfrac{m.dy}{m.dx}\sin \left( \dfrac{y}{x} \right)+\left( mx \right)-\left( my \right)\sin \left( \dfrac{y}{x} \right)$.
$\Rightarrow f\left( mx,my \right)=m.\left( x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right) \right)$.
$\Rightarrow f\left( mx,my \right)=m.f\left( x,y \right)$ -----(2).
So, we can see that the function $f\left( x,y \right)$ satisfies the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$ of being homogeneous. So, the differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$ is homogeneous.
Now, we find the general solution for the given differential equation $x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$ to find the particular solution at $x=1$, $y=\dfrac{\pi }{2}$.
$\Rightarrow x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)+x-y\sin \left( \dfrac{y}{x} \right)=0$.
$\Rightarrow x\dfrac{dy}{dx}\sin \left( \dfrac{y}{x} \right)=y\sin \left( \dfrac{y}{x} \right)-x$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{y\sin \left( \dfrac{y}{x} \right)-x}{x\sin \left( \dfrac{y}{x} \right)}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{y}{x} \right)\sin \left( \dfrac{y}{x} \right)-\left( \dfrac{x}{x} \right)}{\sin \left( \dfrac{y}{x} \right)}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{y}{x} \right)\sin \left( \dfrac{y}{x} \right)-1}{\sin \left( \dfrac{y}{x} \right)}$ ---------(3).
We know that the homogeneous differential equations of the form \[\dfrac{dy}{dx}=f\left( \dfrac{y}{x} \right)\] are solved by substituting $y=vx$ ------(4).
We have $y=vx$.
We differentiate with respect to ‘x’ on both sides,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( vx \right)$.
We know that the differentiation of the function of form ‘uv’ is performed as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+\dfrac{du}{dx}v$.
$\Rightarrow \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$.
We know that $\dfrac{dx}{dx}=1$.
$\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$ -------(5).
We substitute equations (4) and (5) in equation (3).
$\Rightarrow v+x\dfrac{dv}{dx}=\dfrac{v\sin v-1}{\sin v}$.
$\Rightarrow v+x\dfrac{dv}{dx}=v-\dfrac{1}{\sin v}$.
$\Rightarrow v+x\dfrac{dv}{dx}=v-\operatorname{cosec}v$.
$\Rightarrow x\dfrac{dv}{dx}=v-v-\operatorname{cosec}v$.
$\Rightarrow x\dfrac{dv}{dx}=-\operatorname{cosec}v$.
$\Rightarrow \dfrac{dv}{\operatorname{cosec}v}=-\dfrac{dx}{x}$.
$\Rightarrow \sin vdv=-\dfrac{dx}{x}$.
We perform integration on both sides.
$\Rightarrow \int{\sin vdv}=-\int{\dfrac{dx}{x}}$.
We know that $\int{\sin xdx=-\cos x+c}$ and $\int{\dfrac{dx}{x}=\log x+C}$.
$\Rightarrow -\cos v=-\log x+C$ ------(6).
We have $y=vx$ and now we find the function v.
$\Rightarrow v=\dfrac{y}{x}$ ------- (7).
We substitute equation (7) in equation (6).
$\Rightarrow -\cos \left( \dfrac{y}{x} \right)=-\log x+C$ -------(8).
Let us substitute $x=1$, $y=\dfrac{\pi }{2}$ in equation (8).
$\Rightarrow -\cos \left( \dfrac{\dfrac{\pi }{2}}{1} \right)=-\log \left( 1 \right)+C$
$\Rightarrow -\cos \left( \dfrac{\pi }{2} \right)=-0+C$.
$\Rightarrow -0=C$.
$\Rightarrow C=0$.
Let us substitute the value of C in equation (8).
We get the particular solution as $-\cos \left( \dfrac{y}{x} \right)=-\log x+0$.
$\Rightarrow -\cos \left( \dfrac{y}{x} \right)=-\log x$.
$\Rightarrow \cos \left( \dfrac{y}{x} \right)=\log x$.
The particular solution at $x=1$, $y=\dfrac{\pi }{2}$ is $\cos \left( \dfrac{y}{x} \right)=\log x$.
$\therefore$The given differential equation is homogeneous and the particular solution at at $x=1$, $y=\dfrac{\pi }{2}$ is $\cos \left( \dfrac{y}{x} \right)=\log x$.
Note: We should not say general solution without substituting the value of v. The particular solutions are found only if the values of variables ‘x’ and ‘y’ are given in the problem. We can’t just assume the value of arbitrary constant C without them. We use the process of substituting $y=vx$ only if the differential equation is proved as homogeneous.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

