
Show that the coefficient of middle term of ${{\left( 1+x \right)}^{2n}}$ is equal to the sum of coefficient of the two middle term of ${{\left( 1+x \right)}^{2n-1}}$
Answer
606.6k+ views
Hint: Try to use the binomial expansion formula. Note that the middle term of ‘m’ numbers is
$\dfrac{m+1}{2}$ if m is odd, or $\dfrac{m}{2}$ and $\dfrac{m}{2}+1$ if m is even.
Complete step-by-step answer:
We know that by binomial formula,
${{\left( 1+x \right)}^{m}}=C_{0}^{m}{{x}^{m}}+C_{1}^{m}{{x}^{m-1}}+......+C_{m}^{m}{{x}^{0}}.....\left( 1 \right)$
Therefore applying this to the given expression ${{\left( 1+x \right)}^{2n}}$, we get
${{\left( 1+x \right)}^{2n}}=C_{0}^{2n}{{x}^{2n}}+C_{1}^{2n}{{x}^{2n-1}}+......+C_{2n}^{2n}{{x}^{0}}.....\left( 2 \right)$
Also, number of terms in ‘m’ power is m+1
Therefore, the total number of terms = 2n+1 i.e., odd number.
So, the middle term is given by, ${{\left( \dfrac{2n+1+1}{2} \right)}^{th}}$ term.
That is,
${{\left( \dfrac{2(n+1)}{2} \right)}^{th}}={{(n+1)}^{th}}$
So, the middle term of ${{\left( 1+x \right)}^{2n}}$ is the (n+1)th term. It is given by,
$C_{n}^{2n}{{x}^{n}}............\left( 3 \right)$
We know the coefficient of the kth term is given by $C_{k-1}^{2n}$.
Therefore the coefficient of the (n+1)th is,
$C_{n}^{2n}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}..........\left( 4 \right)$
Now consider the expansion of ${{\left( 1+x \right)}^{2n-1}}$ .
It contains (2n-1+1)=2n terms, this is an even number.
Therefore, middle terms of even numbers are n and (n+1)th terms.
So, the middle terms of ${{\left( 1+x \right)}^{2n-1}}$ are given by,
nth term: $C_{n-1}^{2n-1}{{x}^{n+1}}$
(n+1)th term: $C_{n}^{2n-1}{{x}^{n}}$
Now the coefficient of nth term =$C_{n-1}^{2n-1}.........\left( 5 \right)$
Coefficient of (n+1)th term = $C_{n}^{2n-1}.........\left( 6 \right)$
Adding equation (5) and (6), we get
\[C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}+\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}........\left( 7 \right)\]
Here we have used the formula,
$C_{i}^{m}=\dfrac{m!}{\left( m-1 \right)i!}$ where $i!=i\left( i-1 \right)\left( i-2 \right).....1$
Solving equation (7), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=2\left( \dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!} \right)$
Multiply numerator and denominator by n, the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{2n\left( 2n-1 \right)!}{n\left( n-1 \right)!n!}$
From the definition of ‘!’ (Factorial) we have, 2n(2n-1)! = (2n)! and n(n-1)! = n!, so the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{n!n!}$
Now ‘n’ can be written as ‘2n-n’, so the above equation can be written as,
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}$
Comparing this with equation (4), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=C_{n}^{2n}$
So, the coefficient of middle term of ${{\left( 1+x \right)}^{2n}}$ is equal to the sum of coefficients of the two middle terms of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved
Note: Students often think of power as a number of terms. This is false, for example, \[{{\left( 1+x \right)}^{0}}\] it has 1 term but the power is 0. ${{\left( 1+x \right)}^{1}}$has 2 terms and not 1 term.
Also, the kth term is not $C_{k}^{m}{{I}^{k}}$ , but $C_{2-1}^{m}{{I}^{k}}$.
$\dfrac{m+1}{2}$ if m is odd, or $\dfrac{m}{2}$ and $\dfrac{m}{2}+1$ if m is even.
Complete step-by-step answer:
We know that by binomial formula,
${{\left( 1+x \right)}^{m}}=C_{0}^{m}{{x}^{m}}+C_{1}^{m}{{x}^{m-1}}+......+C_{m}^{m}{{x}^{0}}.....\left( 1 \right)$
Therefore applying this to the given expression ${{\left( 1+x \right)}^{2n}}$, we get
${{\left( 1+x \right)}^{2n}}=C_{0}^{2n}{{x}^{2n}}+C_{1}^{2n}{{x}^{2n-1}}+......+C_{2n}^{2n}{{x}^{0}}.....\left( 2 \right)$
Also, number of terms in ‘m’ power is m+1
Therefore, the total number of terms = 2n+1 i.e., odd number.
So, the middle term is given by, ${{\left( \dfrac{2n+1+1}{2} \right)}^{th}}$ term.
That is,
${{\left( \dfrac{2(n+1)}{2} \right)}^{th}}={{(n+1)}^{th}}$
So, the middle term of ${{\left( 1+x \right)}^{2n}}$ is the (n+1)th term. It is given by,
$C_{n}^{2n}{{x}^{n}}............\left( 3 \right)$
We know the coefficient of the kth term is given by $C_{k-1}^{2n}$.
Therefore the coefficient of the (n+1)th is,
$C_{n}^{2n}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}..........\left( 4 \right)$
Now consider the expansion of ${{\left( 1+x \right)}^{2n-1}}$ .
It contains (2n-1+1)=2n terms, this is an even number.
Therefore, middle terms of even numbers are n and (n+1)th terms.
So, the middle terms of ${{\left( 1+x \right)}^{2n-1}}$ are given by,
nth term: $C_{n-1}^{2n-1}{{x}^{n+1}}$
(n+1)th term: $C_{n}^{2n-1}{{x}^{n}}$
Now the coefficient of nth term =$C_{n-1}^{2n-1}.........\left( 5 \right)$
Coefficient of (n+1)th term = $C_{n}^{2n-1}.........\left( 6 \right)$
Adding equation (5) and (6), we get
\[C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}+\dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!}........\left( 7 \right)\]
Here we have used the formula,
$C_{i}^{m}=\dfrac{m!}{\left( m-1 \right)i!}$ where $i!=i\left( i-1 \right)\left( i-2 \right).....1$
Solving equation (7), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=2\left( \dfrac{\left( 2n-1 \right)!}{\left( n-1 \right)!n!} \right)$
Multiply numerator and denominator by n, the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{2n\left( 2n-1 \right)!}{n\left( n-1 \right)!n!}$
From the definition of ‘!’ (Factorial) we have, 2n(2n-1)! = (2n)! and n(n-1)! = n!, so the above equation can be written as
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{n!n!}$
Now ‘n’ can be written as ‘2n-n’, so the above equation can be written as,
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=\dfrac{\left( 2n \right)!}{\left( 2n-n \right)!\left( n \right)!}$
Comparing this with equation (4), we get
$C_{n-1}^{2n-1}+C_{n}^{2n-1}=C_{n}^{2n}$
So, the coefficient of middle term of ${{\left( 1+x \right)}^{2n}}$ is equal to the sum of coefficients of the two middle terms of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved
Note: Students often think of power as a number of terms. This is false, for example, \[{{\left( 1+x \right)}^{0}}\] it has 1 term but the power is 0. ${{\left( 1+x \right)}^{1}}$has 2 terms and not 1 term.
Also, the kth term is not $C_{k}^{m}{{I}^{k}}$ , but $C_{2-1}^{m}{{I}^{k}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

