
Show that \[{\sin ^{ - 1}}\dfrac{{12}}{{13}} + {\cos ^{ - 1}}\dfrac{4}{5} + {\tan ^{ - 1}}\dfrac{{63}}{{16}} = \pi \]
Answer
524.4k+ views
Hint: Here we will convert all the quantities in terms of \[{\tan ^{ - 1}}\theta \] first using the trigonometric ratios and then use the following identity to get the desired solution.
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We will also make use of the pythagoras theorem in the solution.
Complete step-by-step answer:
Let us first consider the left hand side:
\[LHS = {\sin ^{ - 1}}\dfrac{{12}}{{13}} + {\cos ^{ - 1}}\dfrac{4}{5} + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]………………………. (1)
We know that,
\[\theta = {\sin ^{ - 1}}\left( {\dfrac{{perpendicular}}{{hypotenuse}}} \right)\]
Hence, \[perpendicular = 12\]
\[hypotenuse = 13\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( {13} \right)^2} = {\left( {base} \right)^2} + {\left( {12} \right)^2}\]
Simplifying it further we get:-
\[{\left( {base} \right)^2} = 169 - 144\]
\[ \Rightarrow {\left( {base} \right)^2} = 25\]
Taking square root we get:-
\[base = 5\]
Now we know that,
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right)\]…………………….. (2)
Now we know that,
\[\alpha = {\cos ^{ - 1}}\left( {\dfrac{{base}}{{hypotenuse}}} \right)\]
Therefore,
\[base = 4\]
\[hypotenuse = 5\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( 5 \right)^2} = {\left( 4 \right)^2} + {\left( {perpendicular} \right)^2}\]
Simplifying it further we get:-
\[{\left( {perpendicular} \right)^2} = 25 - 16\]
\[ \Rightarrow {\left( {perpendicular} \right)^2} = 9\]
Taking square root we get:-
\[perpendicular = 3\]
Now we know that,
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\]……………………………. (3)
Now putting the values from equation 2 and equation 3 in equation 1 we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right) + {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Now applying the following identity for first two terms :-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12}}{5} + \dfrac{3}{4}}}{{1 - \left( {\dfrac{{12}}{5}} \right)\left( {\dfrac{3}{4}} \right)}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Taking the LCM we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12\left( 4 \right) + 3\left( 5 \right)}}{{20}}}}{{1 - \dfrac{{36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again taking the LCM in denominator we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{48 + 15}}{{20}}}}{{\dfrac{{20 - 36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Simplifying it further we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{63}}{{ - 16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
This implies,
\[LHS = {\tan ^{ - 1}}\left( { - \dfrac{{63}}{{16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again applying the following identity:-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{ - \dfrac{{63}}{{16}} + \dfrac{{63}}{{16}}}}{{1 - \left( { - \dfrac{{63}}{{16}}} \right)\left( {\dfrac{{63}}{{16}}} \right)}}} \right)\]
Simplifying it we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{{1 - \left( { - 1} \right)}}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{2}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( 0 \right)\]
Now we know that,
\[\tan \pi = 0\]
\[ \Rightarrow {\tan ^{ - 1}}0 = \pi \]
Hence, substituting the value we get:-
\[ \Rightarrow LHS = \pi \]
Now considering RHS we get:-
\[RHS = \pi \]
Hence, \[LHS = RHS\]
Hence, proved.
Note: Students should use the trigonometric ratios carefully and convert them using the Pythagoras theorem.
In a right angled triangle,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We will also make use of the pythagoras theorem in the solution.
Complete step-by-step answer:
Let us first consider the left hand side:
\[LHS = {\sin ^{ - 1}}\dfrac{{12}}{{13}} + {\cos ^{ - 1}}\dfrac{4}{5} + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]………………………. (1)
We know that,
\[\theta = {\sin ^{ - 1}}\left( {\dfrac{{perpendicular}}{{hypotenuse}}} \right)\]
Hence, \[perpendicular = 12\]
\[hypotenuse = 13\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( {13} \right)^2} = {\left( {base} \right)^2} + {\left( {12} \right)^2}\]
Simplifying it further we get:-
\[{\left( {base} \right)^2} = 169 - 144\]
\[ \Rightarrow {\left( {base} \right)^2} = 25\]
Taking square root we get:-
\[base = 5\]
Now we know that,
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right)\]…………………….. (2)
Now we know that,
\[\alpha = {\cos ^{ - 1}}\left( {\dfrac{{base}}{{hypotenuse}}} \right)\]
Therefore,
\[base = 4\]
\[hypotenuse = 5\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( 5 \right)^2} = {\left( 4 \right)^2} + {\left( {perpendicular} \right)^2}\]
Simplifying it further we get:-
\[{\left( {perpendicular} \right)^2} = 25 - 16\]
\[ \Rightarrow {\left( {perpendicular} \right)^2} = 9\]
Taking square root we get:-
\[perpendicular = 3\]
Now we know that,
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\]……………………………. (3)
Now putting the values from equation 2 and equation 3 in equation 1 we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right) + {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Now applying the following identity for first two terms :-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12}}{5} + \dfrac{3}{4}}}{{1 - \left( {\dfrac{{12}}{5}} \right)\left( {\dfrac{3}{4}} \right)}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Taking the LCM we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12\left( 4 \right) + 3\left( 5 \right)}}{{20}}}}{{1 - \dfrac{{36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again taking the LCM in denominator we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{48 + 15}}{{20}}}}{{\dfrac{{20 - 36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Simplifying it further we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{63}}{{ - 16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
This implies,
\[LHS = {\tan ^{ - 1}}\left( { - \dfrac{{63}}{{16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again applying the following identity:-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{ - \dfrac{{63}}{{16}} + \dfrac{{63}}{{16}}}}{{1 - \left( { - \dfrac{{63}}{{16}}} \right)\left( {\dfrac{{63}}{{16}}} \right)}}} \right)\]
Simplifying it we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{{1 - \left( { - 1} \right)}}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{2}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( 0 \right)\]
Now we know that,
\[\tan \pi = 0\]
\[ \Rightarrow {\tan ^{ - 1}}0 = \pi \]
Hence, substituting the value we get:-
\[ \Rightarrow LHS = \pi \]
Now considering RHS we get:-
\[RHS = \pi \]
Hence, \[LHS = RHS\]
Hence, proved.
Note: Students should use the trigonometric ratios carefully and convert them using the Pythagoras theorem.
In a right angled triangle,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]

Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
