
Show that \[{\sin ^{ - 1}}\dfrac{{12}}{{13}} + {\cos ^{ - 1}}\dfrac{4}{5} + {\tan ^{ - 1}}\dfrac{{63}}{{16}} = \pi \]
Answer
573.6k+ views
Hint: Here we will convert all the quantities in terms of \[{\tan ^{ - 1}}\theta \] first using the trigonometric ratios and then use the following identity to get the desired solution.
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We will also make use of the pythagoras theorem in the solution.
Complete step-by-step answer:
Let us first consider the left hand side:
\[LHS = {\sin ^{ - 1}}\dfrac{{12}}{{13}} + {\cos ^{ - 1}}\dfrac{4}{5} + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]………………………. (1)
We know that,
\[\theta = {\sin ^{ - 1}}\left( {\dfrac{{perpendicular}}{{hypotenuse}}} \right)\]
Hence, \[perpendicular = 12\]
\[hypotenuse = 13\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( {13} \right)^2} = {\left( {base} \right)^2} + {\left( {12} \right)^2}\]
Simplifying it further we get:-
\[{\left( {base} \right)^2} = 169 - 144\]
\[ \Rightarrow {\left( {base} \right)^2} = 25\]
Taking square root we get:-
\[base = 5\]
Now we know that,
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right)\]…………………….. (2)
Now we know that,
\[\alpha = {\cos ^{ - 1}}\left( {\dfrac{{base}}{{hypotenuse}}} \right)\]
Therefore,
\[base = 4\]
\[hypotenuse = 5\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( 5 \right)^2} = {\left( 4 \right)^2} + {\left( {perpendicular} \right)^2}\]
Simplifying it further we get:-
\[{\left( {perpendicular} \right)^2} = 25 - 16\]
\[ \Rightarrow {\left( {perpendicular} \right)^2} = 9\]
Taking square root we get:-
\[perpendicular = 3\]
Now we know that,
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\]……………………………. (3)
Now putting the values from equation 2 and equation 3 in equation 1 we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right) + {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Now applying the following identity for first two terms :-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12}}{5} + \dfrac{3}{4}}}{{1 - \left( {\dfrac{{12}}{5}} \right)\left( {\dfrac{3}{4}} \right)}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Taking the LCM we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12\left( 4 \right) + 3\left( 5 \right)}}{{20}}}}{{1 - \dfrac{{36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again taking the LCM in denominator we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{48 + 15}}{{20}}}}{{\dfrac{{20 - 36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Simplifying it further we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{63}}{{ - 16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
This implies,
\[LHS = {\tan ^{ - 1}}\left( { - \dfrac{{63}}{{16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again applying the following identity:-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{ - \dfrac{{63}}{{16}} + \dfrac{{63}}{{16}}}}{{1 - \left( { - \dfrac{{63}}{{16}}} \right)\left( {\dfrac{{63}}{{16}}} \right)}}} \right)\]
Simplifying it we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{{1 - \left( { - 1} \right)}}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{2}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( 0 \right)\]
Now we know that,
\[\tan \pi = 0\]
\[ \Rightarrow {\tan ^{ - 1}}0 = \pi \]
Hence, substituting the value we get:-
\[ \Rightarrow LHS = \pi \]
Now considering RHS we get:-
\[RHS = \pi \]
Hence, \[LHS = RHS\]
Hence, proved.
Note: Students should use the trigonometric ratios carefully and convert them using the Pythagoras theorem.
In a right angled triangle,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We will also make use of the pythagoras theorem in the solution.
Complete step-by-step answer:
Let us first consider the left hand side:
\[LHS = {\sin ^{ - 1}}\dfrac{{12}}{{13}} + {\cos ^{ - 1}}\dfrac{4}{5} + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]………………………. (1)
We know that,
\[\theta = {\sin ^{ - 1}}\left( {\dfrac{{perpendicular}}{{hypotenuse}}} \right)\]
Hence, \[perpendicular = 12\]
\[hypotenuse = 13\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( {13} \right)^2} = {\left( {base} \right)^2} + {\left( {12} \right)^2}\]
Simplifying it further we get:-
\[{\left( {base} \right)^2} = 169 - 144\]
\[ \Rightarrow {\left( {base} \right)^2} = 25\]
Taking square root we get:-
\[base = 5\]
Now we know that,
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right)\]…………………….. (2)
Now we know that,
\[\alpha = {\cos ^{ - 1}}\left( {\dfrac{{base}}{{hypotenuse}}} \right)\]
Therefore,
\[base = 4\]
\[hypotenuse = 5\]
Now according to Pythagoras theorem we know that,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Putting in the respective values we get:-
\[{\left( 5 \right)^2} = {\left( 4 \right)^2} + {\left( {perpendicular} \right)^2}\]
Simplifying it further we get:-
\[{\left( {perpendicular} \right)^2} = 25 - 16\]
\[ \Rightarrow {\left( {perpendicular} \right)^2} = 9\]
Taking square root we get:-
\[perpendicular = 3\]
Now we know that,
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{{perpendicular}}{{base}}} \right)\]
Putting the values we get:-
\[\alpha = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\]……………………………. (3)
Now putting the values from equation 2 and equation 3 in equation 1 we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{12}}{5}} \right) + {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Now applying the following identity for first two terms :-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12}}{5} + \dfrac{3}{4}}}{{1 - \left( {\dfrac{{12}}{5}} \right)\left( {\dfrac{3}{4}} \right)}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Taking the LCM we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{12\left( 4 \right) + 3\left( 5 \right)}}{{20}}}}{{1 - \dfrac{{36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again taking the LCM in denominator we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{48 + 15}}{{20}}}}{{\dfrac{{20 - 36}}{{20}}}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Simplifying it further we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{63}}{{ - 16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
This implies,
\[LHS = {\tan ^{ - 1}}\left( { - \dfrac{{63}}{{16}}} \right) + {\tan ^{ - 1}}\dfrac{{63}}{{16}}\]
Again applying the following identity:-
\[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
We get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{{ - \dfrac{{63}}{{16}} + \dfrac{{63}}{{16}}}}{{1 - \left( { - \dfrac{{63}}{{16}}} \right)\left( {\dfrac{{63}}{{16}}} \right)}}} \right)\]
Simplifying it we get:-
\[LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{{1 - \left( { - 1} \right)}}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( {\dfrac{0}{2}} \right)\]
\[ \Rightarrow LHS = {\tan ^{ - 1}}\left( 0 \right)\]
Now we know that,
\[\tan \pi = 0\]
\[ \Rightarrow {\tan ^{ - 1}}0 = \pi \]
Hence, substituting the value we get:-
\[ \Rightarrow LHS = \pi \]
Now considering RHS we get:-
\[RHS = \pi \]
Hence, \[LHS = RHS\]
Hence, proved.
Note: Students should use the trigonometric ratios carefully and convert them using the Pythagoras theorem.
In a right angled triangle,
\[{\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

