Show that $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Answer
385.2k+ views
Hint- Here, we will reduce the RHS of the inequality to be proved in simpler terms with the help of the formula of sum of first $n$ natural numbers.
To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$
Taking RHS of the inequality (1), we get
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$
As we know that the sum of first $n$ natural numbers is given by
${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Substituting this value in the RHS of the inequality, we can write
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$
Therefore, the inequality that we need to prove becomes
$
n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\
\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\
$
Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)
Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$
Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.
As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.
Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.
To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$
Taking RHS of the inequality (1), we get
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$
As we know that the sum of first $n$ natural numbers is given by
${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Substituting this value in the RHS of the inequality, we can write
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$
Therefore, the inequality that we need to prove becomes
$
n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\
\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\
$
Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)
Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$
Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.
As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.
Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which one of the following places is unlikely to be class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference Between Plant Cell and Animal Cell

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
