Show that $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Answer
Verified
506.1k+ views
Hint- Here, we will reduce the RHS of the inequality to be proved in simpler terms with the help of the formula of sum of first $n$ natural numbers.
To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$
Taking RHS of the inequality (1), we get
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$
As we know that the sum of first $n$ natural numbers is given by
${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Substituting this value in the RHS of the inequality, we can write
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$
Therefore, the inequality that we need to prove becomes
$
n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\
\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\
$
Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)
Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$
Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.
As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.
Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.
To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$
Taking RHS of the inequality (1), we get
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$
As we know that the sum of first $n$ natural numbers is given by
${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Substituting this value in the RHS of the inequality, we can write
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$
Therefore, the inequality that we need to prove becomes
$
n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\
\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\
$
Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)
Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$
Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.
As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.
Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE