Answer

Verified

475.8k+ views

Hint- Here, we will reduce the RHS of the inequality to be proved in simpler terms with the help of the formula of sum of first $n$ natural numbers.

To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$

Taking RHS of the inequality (1), we get

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$

As we know that the sum of first $n$ natural numbers is given by

${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$

Substituting this value in the RHS of the inequality, we can write

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$

Therefore, the inequality that we need to prove becomes

$

n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\

\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\

$

Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)

Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$

Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.

As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.

Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.

Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.

To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$

Taking RHS of the inequality (1), we get

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$

As we know that the sum of first $n$ natural numbers is given by

${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$

Substituting this value in the RHS of the inequality, we can write

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$

Therefore, the inequality that we need to prove becomes

$

n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\

\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\

$

Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)

Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$

Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.

As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.

Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.

Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

At which age domestication of animals started A Neolithic class 11 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE