# Show that $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.

Last updated date: 15th Mar 2023

•

Total views: 306.6k

•

Views today: 2.87k

Answer

Verified

306.6k+ views

Hint- Here, we will reduce the RHS of the inequality to be proved in simpler terms with the help of the formula of sum of first $n$ natural numbers.

To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$

Taking RHS of the inequality (1), we get

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$

As we know that the sum of first $n$ natural numbers is given by

${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$

Substituting this value in the RHS of the inequality, we can write

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$

Therefore, the inequality that we need to prove becomes

$

n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\

\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\

$

Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)

Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$

Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.

As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.

Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.

Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.

To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$

Taking RHS of the inequality (1), we get

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$

As we know that the sum of first $n$ natural numbers is given by

${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$

Substituting this value in the RHS of the inequality, we can write

${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$

Therefore, the inequality that we need to prove becomes

$

n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\

\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\

$

Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)

Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$

Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.

As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.

Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.

Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE