
Show that $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Answer
610.8k+ views
Hint- Here, we will reduce the RHS of the inequality to be proved in simpler terms with the help of the formula of sum of first $n$ natural numbers.
To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$
Taking RHS of the inequality (1), we get
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$
As we know that the sum of first $n$ natural numbers is given by
${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Substituting this value in the RHS of the inequality, we can write
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$
Therefore, the inequality that we need to prove becomes
$
n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\
\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\
$
Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)
Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$
Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.
As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.
Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.
To show: $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right){\text{ }} \to {\text{(1)}}$
Taking RHS of the inequality (1), we get
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$
As we know that the sum of first $n$ natural numbers is given by
${1^3} + {2^3} + {3^3} + ...... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$
Substituting this value in the RHS of the inequality, we can write
${\text{RHS}} = 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right) = 8\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}} \right] = 2{n^2}{\left( {n + 1} \right)^2}$
Therefore, the inequality that we need to prove becomes
$
n{\left( {n + 1} \right)^3} < 2{n^2}{\left( {n + 1} \right)^2} \Rightarrow n{\left( {n + 1} \right)^3} - 2{n^2}{\left( {n + 1} \right)^2} < 0 \Rightarrow n{\left( {n + 1} \right)^2}\left[ {\left( {n + 1} \right) - 2n} \right] < 0 \\
\Rightarrow n{\left( {n + 1} \right)^2}\left( {1 - n} \right) < 0{\text{ }} \to {\text{(2)}} \\
$
Since, we know that ${\left( {n + 1} \right)^2} \geqslant 0$ (always)
Also $n$ represents natural numbers i.e., $n = 1,2,3,.... \Rightarrow n \geqslant 1$ and $ \Rightarrow n \geqslant 1 \Rightarrow \left( {1 - n} \right) \leqslant 0$
Now, for ${\left( {n + 1} \right)^2} \geqslant 0$, $n \geqslant 1$ and $\left( {1 - n} \right) \leqslant 0$, inequality (2) holds true.
As the inequality (1) was reduced to inequality (2) and if inequality (2) holds true that means inequality (1) also holds true.
Hence, $n{\left( {n + 1} \right)^3} < 8\left( {{1^3} + {2^3} + {3^3} + ...... + {n^3}} \right)$.
Note- In this problem if we observe carefully for inequality (2) to be proved, the final sign to be obtained by LHS should be negative and we have already seen that sign of ${\left( {n + 1} \right)^2}$ and $n$ is positive whereas sign of $\left( {1 - n} \right)$ is negative. Hence, the final sign of LHS is negative that is LHS is always less than zero.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

