
Show that ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$.
Answer
607.2k+ views
Hint: Here, we will be proceeding with the help of the trigonometric formulas which are $\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3}$ and $\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta $ in order to simplify the LHS of the equation which needs to be proved.
Complete step-by-step answer:
To show: ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
As we know that $\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3}$ and $\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta $
Taking LHS of the equation which needs to be proved, we have
\[{\text{LHS}} = {\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right)\]
By substituting the formulas for \[\left( {\sin 3\theta } \right)\] and \[\left( {\cos 3\theta } \right)\] in the above equation, we get
\[
\Rightarrow {\text{LHS}} = {\left( {\cos \theta } \right)^3}\left[ {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right] + {\left( {\sin \theta } \right)^3}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 4{\left( {\sin \theta } \right)^3}{\left( {\cos \theta } \right)^3} + 4{\left( {\cos \theta } \right)^3}{\left( {\sin \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\]
Now, taking \[3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] common in the above equation, we get
\[ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Also we know that ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $
$ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(1)}}$
Since we know that $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$
Let us multiply and divide the RHS of equation (1) by 2, we get
$
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left( {\cos 2\theta } \right) \\
$
By substituting the formula for $\sin 2\theta $ in the above equation, we get
$ \Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)$
Again multiply and divide the RHS of above equation by 2 and using the formula$\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$, we get
\[
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left( {\sin 4\theta } \right) = {\text{RHS}} \\
\]
Clearly, from the above equation it is clear that the LHS of the equation which needs to be proved is equal to its RHS.
Hence, ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
Note: In this particular problem, we will somehow convert the LHS of the equation which needs to be proved in terms of some trigonometric function with angle $4\theta $ which is there in RHS of the equation which needs to be proved by using the formulas which are $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ and ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $.
Complete step-by-step answer:
To show: ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
As we know that $\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3}$ and $\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta $
Taking LHS of the equation which needs to be proved, we have
\[{\text{LHS}} = {\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right)\]
By substituting the formulas for \[\left( {\sin 3\theta } \right)\] and \[\left( {\cos 3\theta } \right)\] in the above equation, we get
\[
\Rightarrow {\text{LHS}} = {\left( {\cos \theta } \right)^3}\left[ {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right] + {\left( {\sin \theta } \right)^3}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 4{\left( {\sin \theta } \right)^3}{\left( {\cos \theta } \right)^3} + 4{\left( {\cos \theta } \right)^3}{\left( {\sin \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\]
Now, taking \[3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] common in the above equation, we get
\[ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Also we know that ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $
$ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(1)}}$
Since we know that $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$
Let us multiply and divide the RHS of equation (1) by 2, we get
$
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left( {\cos 2\theta } \right) \\
$
By substituting the formula for $\sin 2\theta $ in the above equation, we get
$ \Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)$
Again multiply and divide the RHS of above equation by 2 and using the formula$\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$, we get
\[
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left( {\sin 4\theta } \right) = {\text{RHS}} \\
\]
Clearly, from the above equation it is clear that the LHS of the equation which needs to be proved is equal to its RHS.
Hence, ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
Note: In this particular problem, we will somehow convert the LHS of the equation which needs to be proved in terms of some trigonometric function with angle $4\theta $ which is there in RHS of the equation which needs to be proved by using the formulas which are $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ and ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

