Answer
Verified
491.1k+ views
Hint: Here, we will be proceeding with the help of the trigonometric formulas which are $\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3}$ and $\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta $ in order to simplify the LHS of the equation which needs to be proved.
Complete step-by-step answer:
To show: ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
As we know that $\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3}$ and $\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta $
Taking LHS of the equation which needs to be proved, we have
\[{\text{LHS}} = {\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right)\]
By substituting the formulas for \[\left( {\sin 3\theta } \right)\] and \[\left( {\cos 3\theta } \right)\] in the above equation, we get
\[
\Rightarrow {\text{LHS}} = {\left( {\cos \theta } \right)^3}\left[ {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right] + {\left( {\sin \theta } \right)^3}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 4{\left( {\sin \theta } \right)^3}{\left( {\cos \theta } \right)^3} + 4{\left( {\cos \theta } \right)^3}{\left( {\sin \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\]
Now, taking \[3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] common in the above equation, we get
\[ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Also we know that ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $
$ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(1)}}$
Since we know that $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$
Let us multiply and divide the RHS of equation (1) by 2, we get
$
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left( {\cos 2\theta } \right) \\
$
By substituting the formula for $\sin 2\theta $ in the above equation, we get
$ \Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)$
Again multiply and divide the RHS of above equation by 2 and using the formula$\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$, we get
\[
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left( {\sin 4\theta } \right) = {\text{RHS}} \\
\]
Clearly, from the above equation it is clear that the LHS of the equation which needs to be proved is equal to its RHS.
Hence, ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
Note: In this particular problem, we will somehow convert the LHS of the equation which needs to be proved in terms of some trigonometric function with angle $4\theta $ which is there in RHS of the equation which needs to be proved by using the formulas which are $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ and ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $.
Complete step-by-step answer:
To show: ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
As we know that $\sin 3\theta = 3\sin \theta - 4{\left( {\sin \theta } \right)^3}$ and $\cos 3\theta = 4{\left( {\cos \theta } \right)^3} - 3\cos \theta $
Taking LHS of the equation which needs to be proved, we have
\[{\text{LHS}} = {\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right)\]
By substituting the formulas for \[\left( {\sin 3\theta } \right)\] and \[\left( {\cos 3\theta } \right)\] in the above equation, we get
\[
\Rightarrow {\text{LHS}} = {\left( {\cos \theta } \right)^3}\left[ {3\sin \theta - 4{{\left( {\sin \theta } \right)}^3}} \right] + {\left( {\sin \theta } \right)^3}\left[ {4{{\left( {\cos \theta } \right)}^3} - 3\cos \theta } \right] \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 4{\left( {\sin \theta } \right)^3}{\left( {\cos \theta } \right)^3} + 4{\left( {\cos \theta } \right)^3}{\left( {\sin \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right){\left( {\cos \theta } \right)^3} - 3\left( {\cos \theta } \right){\left( {\sin \theta } \right)^3} \\
\]
Now, taking \[3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] common in the above equation, we get
\[ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Also we know that ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $
$ \Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(1)}}$
Since we know that $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$
Let us multiply and divide the RHS of equation (1) by 2, we get
$
\Rightarrow {\text{LHS}} = 3\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left( {\cos 2\theta } \right) \\
$
By substituting the formula for $\sin 2\theta $ in the above equation, we get
$ \Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)$
Again multiply and divide the RHS of above equation by 2 and using the formula$\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$, we get
\[
\Rightarrow {\text{LHS}} = \dfrac{3}{2}\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] \\
\Rightarrow {\text{LHS}} = \dfrac{3}{4}\left( {\sin 4\theta } \right) = {\text{RHS}} \\
\]
Clearly, from the above equation it is clear that the LHS of the equation which needs to be proved is equal to its RHS.
Hence, ${\left( {\cos \theta } \right)^3}\left( {\sin 3\theta } \right) + {\left( {\sin \theta } \right)^3}\left( {\cos 3\theta } \right) = \dfrac{3}{4}\left( {\sin 4\theta } \right)$
Note: In this particular problem, we will somehow convert the LHS of the equation which needs to be proved in terms of some trigonometric function with angle $4\theta $ which is there in RHS of the equation which needs to be proved by using the formulas which are $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ and ${\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2} = \cos 2\theta $.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths