
Show that $ \left( 2,1 \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
Answer
499.8k+ views
Hint: We assume the circumcentre first and then find the distance from the vertices of a triangle which is equal and called the circum-radius. we equate those equations and find the solution for the assumed coordinates.
Complete step-by-step answer:
Let us assume that $ \left( h,k \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We know that the distance of the circum-centre from the vertices of a triangle is equal and that is called the circum-radius.
Now for $ \left( h,k \right) $ , we can take its distance from the points $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We will get 3 equations to solve the 2 unknowns of $ \left( h,k \right) $ .
We first find the general formula for distance between two arbitrary points.
We take two points $ \left( a,b \right) $ and $ \left( c,d \right) $ .
The formula for distance between those two points will be $ d=\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 3,1 \right) $ , we put the values for $ a=h,c=3 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 2,2 \right) $ , we put the values for $ a=h,c=2 $ and $ b=k,d=2 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 1,1 \right) $ , we put the values for $ a=h,c=1 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
$ \begin{align}
& r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -6h-2k+10=-4h-4k+8 \\
& \Rightarrow h-k=1...........(i) \\
\end{align} $
$ \begin{align}
& r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -2h-2k+2=-4h-4k+8 \\
& \Rightarrow h+k=3........(ii) \\
\end{align} $
We add these two equations and get
$ \begin{align}
& h-k+h+k=1+3 \\
& \Rightarrow 2h=4 \\
& \Rightarrow h=\dfrac{4}{2}=2 \\
\end{align} $
So, $ k=3-2=1 $ . The point becomes $ \left( 2,1 \right) $ .
Thus, proved $ \left( 2,1 \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
Note: The distance of the midpoint of the sides from the circumcentre is equal for all tree parts. We use that to find the coordinates of the point. The length of the sides will be considered in that way also. The triangle is actually a right-angle one.
Complete step-by-step answer:
Let us assume that $ \left( h,k \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We know that the distance of the circum-centre from the vertices of a triangle is equal and that is called the circum-radius.
Now for $ \left( h,k \right) $ , we can take its distance from the points $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We will get 3 equations to solve the 2 unknowns of $ \left( h,k \right) $ .
We first find the general formula for distance between two arbitrary points.
We take two points $ \left( a,b \right) $ and $ \left( c,d \right) $ .
The formula for distance between those two points will be $ d=\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 3,1 \right) $ , we put the values for $ a=h,c=3 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 2,2 \right) $ , we put the values for $ a=h,c=2 $ and $ b=k,d=2 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 1,1 \right) $ , we put the values for $ a=h,c=1 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
$ \begin{align}
& r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -6h-2k+10=-4h-4k+8 \\
& \Rightarrow h-k=1...........(i) \\
\end{align} $
$ \begin{align}
& r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -2h-2k+2=-4h-4k+8 \\
& \Rightarrow h+k=3........(ii) \\
\end{align} $
We add these two equations and get
$ \begin{align}
& h-k+h+k=1+3 \\
& \Rightarrow 2h=4 \\
& \Rightarrow h=\dfrac{4}{2}=2 \\
\end{align} $
So, $ k=3-2=1 $ . The point becomes $ \left( 2,1 \right) $ .
Thus, proved $ \left( 2,1 \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
Note: The distance of the midpoint of the sides from the circumcentre is equal for all tree parts. We use that to find the coordinates of the point. The length of the sides will be considered in that way also. The triangle is actually a right-angle one.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

