
Show that $ \left( 2,1 \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
Answer
494.1k+ views
Hint: We assume the circumcentre first and then find the distance from the vertices of a triangle which is equal and called the circum-radius. we equate those equations and find the solution for the assumed coordinates.
Complete step-by-step answer:
Let us assume that $ \left( h,k \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We know that the distance of the circum-centre from the vertices of a triangle is equal and that is called the circum-radius.
Now for $ \left( h,k \right) $ , we can take its distance from the points $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We will get 3 equations to solve the 2 unknowns of $ \left( h,k \right) $ .
We first find the general formula for distance between two arbitrary points.
We take two points $ \left( a,b \right) $ and $ \left( c,d \right) $ .
The formula for distance between those two points will be $ d=\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 3,1 \right) $ , we put the values for $ a=h,c=3 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 2,2 \right) $ , we put the values for $ a=h,c=2 $ and $ b=k,d=2 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 1,1 \right) $ , we put the values for $ a=h,c=1 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
$ \begin{align}
& r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -6h-2k+10=-4h-4k+8 \\
& \Rightarrow h-k=1...........(i) \\
\end{align} $
$ \begin{align}
& r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -2h-2k+2=-4h-4k+8 \\
& \Rightarrow h+k=3........(ii) \\
\end{align} $
We add these two equations and get
$ \begin{align}
& h-k+h+k=1+3 \\
& \Rightarrow 2h=4 \\
& \Rightarrow h=\dfrac{4}{2}=2 \\
\end{align} $
So, $ k=3-2=1 $ . The point becomes $ \left( 2,1 \right) $ .
Thus, proved $ \left( 2,1 \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
Note: The distance of the midpoint of the sides from the circumcentre is equal for all tree parts. We use that to find the coordinates of the point. The length of the sides will be considered in that way also. The triangle is actually a right-angle one.
Complete step-by-step answer:
Let us assume that $ \left( h,k \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We know that the distance of the circum-centre from the vertices of a triangle is equal and that is called the circum-radius.
Now for $ \left( h,k \right) $ , we can take its distance from the points $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
We will get 3 equations to solve the 2 unknowns of $ \left( h,k \right) $ .
We first find the general formula for distance between two arbitrary points.
We take two points $ \left( a,b \right) $ and $ \left( c,d \right) $ .
The formula for distance between those two points will be $ d=\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 3,1 \right) $ , we put the values for $ a=h,c=3 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 2,2 \right) $ , we put the values for $ a=h,c=2 $ and $ b=k,d=2 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} $ .
For our given points $ \left( h,k \right) $ and $ \left( 1,1 \right) $ , we put the values for $ a=h,c=1 $ and $ b=k,d=1 $ .
Therefore, the distance between those two points is $ r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}} $ .
$ \begin{align}
& r=\sqrt{{{\left( h-3 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -6h-2k+10=-4h-4k+8 \\
& \Rightarrow h-k=1...........(i) \\
\end{align} $
$ \begin{align}
& r=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-1 \right)}^{2}}}=\sqrt{{{\left( h-2 \right)}^{2}}+{{\left( k-2 \right)}^{2}}} \\
& \Rightarrow -2h-2k+2=-4h-4k+8 \\
& \Rightarrow h+k=3........(ii) \\
\end{align} $
We add these two equations and get
$ \begin{align}
& h-k+h+k=1+3 \\
& \Rightarrow 2h=4 \\
& \Rightarrow h=\dfrac{4}{2}=2 \\
\end{align} $
So, $ k=3-2=1 $ . The point becomes $ \left( 2,1 \right) $ .
Thus, proved $ \left( 2,1 \right) $ is the circum-centre of the triangle formed by the vertices $ \left( 3,1 \right) $ , $ \left( 2,2 \right) $ and $ \left( 1,1 \right) $ .
Note: The distance of the midpoint of the sides from the circumcentre is equal for all tree parts. We use that to find the coordinates of the point. The length of the sides will be considered in that way also. The triangle is actually a right-angle one.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

