# Show that $\dfrac{{\tan {{57}^ \circ } + \cot {{37}^ \circ }}}{{\tan {{33}^ \circ } + \cot {{53}^ \circ }}}$ is equal to

A. $\tan {33^ \circ }\cot {57^ \circ }$

B. $\tan {57^ \circ }\cot {37^ \circ }$

C. $\tan {33^ \circ }\cot {53^ \circ }$

D. $\tan {53^ \circ }\cot {37^ \circ }$

Last updated date: 28th Mar 2023

•

Total views: 206.1k

•

Views today: 3.84k

Answer

Verified

206.1k+ views

**Hint:**As we can see that the above question is related to trigonometry as tangent and cotangent are trigonometric ratios. WE can solve this question by applying the trigonometric identities. Some of the basic identities are $\tan (90 - \theta ) = \cot \theta $ and we can write $\cot (90 - \phi ) = \tan \phi $. We should also know that $\cot \theta $ can be written as $\dfrac{1}{{\tan \theta }}$.

**Complete step by step answer:**

Here we have $\dfrac{{\tan {{57}^ \circ } + \cot {{37}^ \circ }}}{{\tan {{33}^ \circ } + \cot {{53}^ \circ }}}$.

By applying the identities $\tan (90 - \theta ) = \cot \theta $ and $\cot (90 - \phi ) = \tan \phi $ in the denominator we can solve this. By comparing for tangent we have $\theta = 57$, and for cotangent we have $\phi = 37$.

So we can write $\dfrac{{\tan {{57}^ \circ } + \cot {{37}^ \circ }}}{{\tan {{(90 - 57)}^ \circ } + \cot {{(90 - 37)}^ \circ }}}$. It can be written as $\dfrac{{\tan {{57}^ \circ } + \cot {{37}^ \circ }}}{{\cot {{57}^ \circ } + \tan {{37}^ \circ }}}$.

We know that $\cot \phi $ can be written as $\dfrac{1}{{\tan \phi }}$ and the same for tan $\theta $.

We can write the expression as $\dfrac{{\tan {{57}^ \circ } + \cot {{37}^ \circ }}}{{\dfrac{1}{{\tan {{57}^ \circ }}} + \dfrac{1}{{\cot {{37}^ \circ }}}}}$.

By taking the LCM of the denominator of the denominator we can write $\dfrac{{\tan {{57}^ \circ } + \cot {{37}^ \circ }}}{{\dfrac{{\cot 37 + \tan 57}}{{\tan {{57}^ \circ } \cdot \cot {{37}^ \circ }}}}}$.

On further solving we can write $\tan {57^ \circ } \cdot \cot 37\left[ {\dfrac{{\tan 57 + \cot 37}}{{\tan 57 + \cot 37}}} \right]$.

So it gives us the value $\tan {57^ \circ } \cdot \cot {37^ \circ }$.

**Hence, the correct answer is option B.**

**Note:**We should note that $\tan \theta $ can also be written as $\dfrac{1}{{\cot \theta }}$. Before solving this kind of question we should have the full knowledge of trigonometric functions and their identities. We know that if there is $\dfrac{a}{{\dfrac{b}{c}}}$, then it can be written as $\dfrac{{c \times a}}{b}$. This is what we have applied in the above solution.

Recently Updated Pages

Which element possesses the biggest atomic radii A class 11 chemistry JEE_Main

The highly efficient method of obtaining beryllium class 11 chemistry JEE_Main

Which of the following sulphates has the highest solubility class 11 chemistry JEE_Main

Amongst the metal Be Mg Ca and Sr of group 2 of the class 11 chemistry JEE_Main

Which of the following metals is present in the greencolored class 11 chemistry JEE_Main

To prevent magnesium from oxidation in the electrolytic class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE