Answer

Verified

447.9k+ views

**Hint:**Here, we will separate the series of numerator and denominator and solve them individually. For solving series, we will convert it into summation series and simplify it and then we will use known answers of summation series to find our final answer. Common series that will be used in this question are –

(i) $\sum\limits_{i=1}^{n}{i}=n\left( \dfrac{n+1}{2} \right)$ that is sum of $1+2+3+4+5+...+n$

(ii) $\sum\limits_{i=1}^{n}{{{i}^{2}}}=n\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}$ that is sum of ${{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+...+{{n}^{2}}$

(iii) $\sum\limits_{i=1}^{n}{{{i}^{3}}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}$ that is sum of ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+{{4}^{3}}+...+{{n}^{3}}$

**Complete step-by-step solution**We are given the series $\dfrac{1\times {{2}^{2}}+2\times {{3}^{3}}+...+n{{\left( n+1 \right)}^{2}}}{{{1}^{2}}\times 2+{{2}^{2}}\times 3+...+{{n}^{2}}\left( n+1 \right)}$.

As we can see, ${{n}^{th}}$ term of the numerator $=n{{\left( n+1 \right)}^{2}}=n\left( {{n}^{2}}+1+2n \right)={{n}^{3}}+2{{n}^{2}}+n$

Also, ${{n}^{th}}$ term of the denominator $={{n}^{2}}\left( n+1 \right)={{n}^{3}}+{{n}^{2}}$.

Let us separate the numerator and the denominator series and solve them separately.

Hence, we can write series in the form as \[\sum\limits_{k=1}^{n}{{{k}^{3}}+}2{{k}^{2}}+k\]. Let us solve this series first. Separating summation for all terms, we get –

\[\sum\limits_{k=1}^{n}{{{k}^{3}}+}\sum\limits_{k=1}^{n}{2{{k}^{2}}}+\sum\limits_{k=1}^{n}{k}\]

Now as we know that,

$\begin{align}

&\Rightarrow \sum\limits_{i=1}^{n}{i}=n\left( \dfrac{n+1}{2} \right) \\

&\Rightarrow \sum\limits_{i=1}^{n}{{{i}^{2}}}=n\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} \\

&\Rightarrow \sum\limits_{i=1}^{n}{{{i}^{3}}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4} \\

\end{align}$

Using them for the given summation, we get –

$\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}+n\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}+n\left( \dfrac{n+1}{2} \right)$

Taking $n\left( \dfrac{n+1}{2} \right)$ common, we get

\[n\dfrac{\left( n+1 \right)}{2}\left[ n\dfrac{\left( n+1 \right)}{2}+\dfrac{2\left( 2n+1 \right)}{3}+1 \right]\]

Taking LCM,

\[n\dfrac{\left( n+1 \right)}{2}\left[ \dfrac{3n\left( n+1 \right)+4\left( 2n+1 \right)+6}{6} \right]\]

Simplifying, we get –

\[\dfrac{n\left( n+1 \right)}{12}\left[ 3{{n}^{2}}+11n+10 \right]\]

\[\Rightarrow \dfrac{n\left( n+1 \right)}{12}\left[ 3{{n}^{2}}+6n+5n+10 \right]\]

Changing to factors, we get –

\[\dfrac{n\left( n+1 \right)\left( n+2 \right)\left( 3n+5 \right)}{12}...................(1)\]

Now, ${{n}^{th}}$ term of the denominator $={{n}^{3}}+{{n}^{2}}$.

Hence, we can write the series in the form as

\[\sum\limits_{k=1}^{n}{{{k}^{3}}+{{k}^{2}}}\]

Separating summation for all terms, we get –

\[\sum\limits_{k=1}^{n}{{{k}^{3}}+}\sum\limits_{k=1}^{n}{{{k}^{2}}}\]

As we know,

$\begin{align}

&\Rightarrow \sum\limits_{i=1}^{n}{{{i}^{2}}}=n\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6} \\

&\Rightarrow \sum\limits_{i=1}^{n}{{{i}^{3}}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4} \\

\end{align}$

Using them, we get –

$\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}+n\dfrac{\left( n+1 \right)\left( 2n+1 \right)}{6}$

Taking $n\left( \dfrac{n+1}{2} \right)$ common, we get

\[n\dfrac{\left( n+1 \right)}{2}\left[ \dfrac{n\left( n+1 \right)}{2}+\dfrac{\left( 2n+1 \right)}{3} \right]\]

Taking LCM,

\[\begin{align}

& \dfrac{n\left( n+1 \right)}{2}\left[ \dfrac{3{{n}^{2}}+3n+4n+2}{6} \right] \\

&\Rightarrow \dfrac{n\left( n+1 \right)}{2}\left[ \dfrac{3{{n}^{2}}+7n+2}{6} \right] \\

\end{align}\]

Changing to factors, we get –

\[\begin{align}

& \dfrac{n\left( n+1 \right)}{12}\left[ 3n\left( n+2 \right)+1\left( n+2 \right) \right] \\

&\Rightarrow \dfrac{n\left( n+1 \right)\left( n+2 \right)\left( 3n+1 \right)}{12}.....................(2) \\

\end{align}\]

As we know, equation (1) represents summation of numerator of given series, equation (2) represents summation of denominator of given series.

Hence, putting them in given equation, we get –

$\dfrac{1\times {{2}^{2}}+2\times {{3}^{3}}+...+n{{\left( n+1 \right)}^{2}}}{{{1}^{2}}\times 2+{{2}^{2}}\times 3+...+{{n}^{2}}\left( n+1 \right)}=\dfrac{\dfrac{n\left( n+1 \right)\left( n+2 \right)\left( 3n+5 \right)}{12}}{\dfrac{n\left( n+1 \right)\left( n+2 \right)\left( 3n+1 \right)}{12}}$

$\begin{align}

& =\dfrac{n\left( n+1 \right)\left( n+2 \right)\left( 3n+5 \right)}{12}\times \dfrac{12}{n\left( n+1 \right)\left( n+2 \right)\left( 3n+1 \right)} \\

& =\left( \dfrac{3n+5}{3n+1} \right) \\

\end{align}$

**Hence, the given result is proved.**

**Note:**The students should know how to convert into summation series for solving these sums. They should remember basic summation formula such that \[\sum{n},{{\sum{n}}^{2}},{{\sum{n}}^{3}}\]. Calculations in this sum are quite difficult and students should do them carefully step by step. Converting the equation to factor is important so that we can cancel them out at last; otherwise, we will get stuck and cannot find the required answer.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The only snake that builds a nest is a Krait b King class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE