Answer
Verified
492.3k+ views
Hint: In order to solve this type of question, first we have to calculate the remaining balance and then we have to calculate the interest on the unpaid amount. After that we have to calculate the number of instalments.
Complete step-by-step answer:
Given-
Cost of the scooter = $Rs22000$
Down payment made by cash = $Rs4000$
Remaining balance =$
Rs22000 - Rs4000 \\
= Rs18000 \\
$
Annual instalment $ = 1000 + $ Interest on unpaid amount $@10% $
${1^{st}}$ Instalment, unpaid amount $ = 18000$
Interest on unpaid amount $ = \dfrac{{10}}{{100}} \times 18000 = 1800$
Therefore, amount of instalment $ = 1000 + 1800 = 2800 - - - - \left( 1 \right)$
${2^{nd}}$ Instalment, unpaid amount$ = 18000 - 1000 = 17000$
Interest on unpaid amount $ = = \dfrac{{10}}{{100}} \times 17000 = 1700$
Therefore, amount of instalment $ = 1000 + 1700 = 2700 - - - - - \left( 2 \right)$
${3^{rd}}$ instalment, unpaid amount $ = 17000 - 1000 = 16000$
Interest on unpaid amount $ = = \dfrac{{10}}{{100}} \times 16000 = 1600$
Therefore, amount of instalment $ = 1000 + 1600 = 2600 - - - - - \left( 3 \right)$
Thus, from (1), (2) and (3) our instalments are $2800,2700,2600.$
Number of instalments $ = \dfrac{{\operatorname{Remaining} {\text{ }}balance{\text{ }}left}}{{balance{\text{ cleared per instalment}}}} = \dfrac{{18000}}{{1000}} = 18$
So, our instalments are $2800,2700,2600,......to{\text{ 18terms}}{\text{.}}$
We can observe that this is an $AP$ as difference between consecutive terms is an $AP.$
Hence,
First term $\left( a \right) = 2800$
Common difference= $\left( d \right) = 2700 - 2800 = - 100$
Number of terms$ = n = 18$
We need to calculate total amount paid in $18$ instalments i.e.$\left( {2800 + 2700 + 2600......to{\text{ 18terms}}} \right)$
We have to apply the formula
${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
Where,
$
{S_n} = sum{\text{ of n terms of A}}{\text{.P}}{\text{.}} \\
{\text{n = number of terms}}{\text{.}} \\
{\text{a = first term and d = common difference}} \\
$
Putting the value of $n = 18,a = 2800{\text{ }}and{\text{ d = - 100}}$
${S_n} = \dfrac{{18}}{2}\left( {2\left( {2800} \right) + \left( {18 - 1} \right)\left( { - 100} \right)} \right)$
Or ${S_n} = 9\left( {5600 + 17\left( { - 100} \right)} \right)$
Or ${S_n} = 9\left( {5600 - 1700} \right)$
Or ${S_n} = 9\left( {3900} \right)$
Or ${S_n} = 35100$
Hence, the amount paid in $18$ instalments$ = Rs{\text{ }}35100$
Note: Whenever we face these type of question the key concept is that we have to calculate the annual instalment with annual interest and then total number of instalment and simply substituting the value of $\left( a \right)$ and $\left( d \right)$ in the equation ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ .
Complete step-by-step answer:
Given-
Cost of the scooter = $Rs22000$
Down payment made by cash = $Rs4000$
Remaining balance =$
Rs22000 - Rs4000 \\
= Rs18000 \\
$
Annual instalment $ = 1000 + $ Interest on unpaid amount $@10% $
${1^{st}}$ Instalment, unpaid amount $ = 18000$
Interest on unpaid amount $ = \dfrac{{10}}{{100}} \times 18000 = 1800$
Therefore, amount of instalment $ = 1000 + 1800 = 2800 - - - - \left( 1 \right)$
${2^{nd}}$ Instalment, unpaid amount$ = 18000 - 1000 = 17000$
Interest on unpaid amount $ = = \dfrac{{10}}{{100}} \times 17000 = 1700$
Therefore, amount of instalment $ = 1000 + 1700 = 2700 - - - - - \left( 2 \right)$
${3^{rd}}$ instalment, unpaid amount $ = 17000 - 1000 = 16000$
Interest on unpaid amount $ = = \dfrac{{10}}{{100}} \times 16000 = 1600$
Therefore, amount of instalment $ = 1000 + 1600 = 2600 - - - - - \left( 3 \right)$
Thus, from (1), (2) and (3) our instalments are $2800,2700,2600.$
Number of instalments $ = \dfrac{{\operatorname{Remaining} {\text{ }}balance{\text{ }}left}}{{balance{\text{ cleared per instalment}}}} = \dfrac{{18000}}{{1000}} = 18$
So, our instalments are $2800,2700,2600,......to{\text{ 18terms}}{\text{.}}$
We can observe that this is an $AP$ as difference between consecutive terms is an $AP.$
Hence,
First term $\left( a \right) = 2800$
Common difference= $\left( d \right) = 2700 - 2800 = - 100$
Number of terms$ = n = 18$
We need to calculate total amount paid in $18$ instalments i.e.$\left( {2800 + 2700 + 2600......to{\text{ 18terms}}} \right)$
We have to apply the formula
${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
Where,
$
{S_n} = sum{\text{ of n terms of A}}{\text{.P}}{\text{.}} \\
{\text{n = number of terms}}{\text{.}} \\
{\text{a = first term and d = common difference}} \\
$
Putting the value of $n = 18,a = 2800{\text{ }}and{\text{ d = - 100}}$
${S_n} = \dfrac{{18}}{2}\left( {2\left( {2800} \right) + \left( {18 - 1} \right)\left( { - 100} \right)} \right)$
Or ${S_n} = 9\left( {5600 + 17\left( { - 100} \right)} \right)$
Or ${S_n} = 9\left( {5600 - 1700} \right)$
Or ${S_n} = 9\left( {3900} \right)$
Or ${S_n} = 35100$
Hence, the amount paid in $18$ instalments$ = Rs{\text{ }}35100$
Note: Whenever we face these type of question the key concept is that we have to calculate the annual instalment with annual interest and then total number of instalment and simply substituting the value of $\left( a \right)$ and $\left( d \right)$ in the equation ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE