
Seven times a two-digit number is equal to four times the number obtained by reversing the digits. If the difference between the digits is 3. Find the number.
Answer
603.9k+ views
Hint: For a two digit number ‘ab’, the value is equal to (10a + b). When we reverse the digits it becomes ‘ba’, which is equal to (10b + a).
Complete step-by-step answer:
Let the original number be ‘xy, ‘y’ at one’s place and ‘x’ at ten’s place.
$ \Rightarrow $ Value of original two digit number = 10x + y
After reversing the digits, we get number ‘yx’, one’s place and ten’s place interchanged.
$ \Rightarrow $ Value of reversed number = 10y + x
From the given information, seven times the original number is equal to four times the reversed number.
$ \Rightarrow $ 7(10x + y) = 4(10y + x)
On simplification, we get
$ \Rightarrow $ 70x + 7y = 40y + 4x
$ \Rightarrow $ 66x = 33y
$ \Rightarrow $ y = 2x …. (1)
It is clear from the equation (1) that $y > x$.
It is given that the difference of digits is 3. So we can write
y – x = 3
Substituting ‘y’ value from equation (1)
$ \Rightarrow $ 2x – x = 3
$ \Rightarrow $ x = 3
So y = 2x = 2(3) = 6
$$\therefore $$ The original two digit number is 36 and reversed number is 63.
Note: We have to clearly understand the given conditions on digits of the number, so that we can form equations with variables to get required values. After solving the equations we will end up with variable values which in turn give us the required number. After getting the numbers we can cross check with the given conditions.
Finally we got the original number as 36 and reversed number is 63.
When we check the first given condition, 7 times the original number is equal to 4 times the reversed number.
7(36) = 252 = 4(63) Verified.
The second condition, the difference between digits 6 – 3 = 3 Verified.
Complete step-by-step answer:
Let the original number be ‘xy, ‘y’ at one’s place and ‘x’ at ten’s place.
$ \Rightarrow $ Value of original two digit number = 10x + y
After reversing the digits, we get number ‘yx’, one’s place and ten’s place interchanged.
$ \Rightarrow $ Value of reversed number = 10y + x
From the given information, seven times the original number is equal to four times the reversed number.
$ \Rightarrow $ 7(10x + y) = 4(10y + x)
On simplification, we get
$ \Rightarrow $ 70x + 7y = 40y + 4x
$ \Rightarrow $ 66x = 33y
$ \Rightarrow $ y = 2x …. (1)
It is clear from the equation (1) that $y > x$.
It is given that the difference of digits is 3. So we can write
y – x = 3
Substituting ‘y’ value from equation (1)
$ \Rightarrow $ 2x – x = 3
$ \Rightarrow $ x = 3
So y = 2x = 2(3) = 6
$$\therefore $$ The original two digit number is 36 and reversed number is 63.
Note: We have to clearly understand the given conditions on digits of the number, so that we can form equations with variables to get required values. After solving the equations we will end up with variable values which in turn give us the required number. After getting the numbers we can cross check with the given conditions.
Finally we got the original number as 36 and reversed number is 63.
When we check the first given condition, 7 times the original number is equal to 4 times the reversed number.
7(36) = 252 = 4(63) Verified.
The second condition, the difference between digits 6 – 3 = 3 Verified.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

