
Self-inductance of a coaxial cable: A coaxial cable consists of a long cylinder of radius $a$ which is surrounded by a hollow coaxial cylinder of the radius $b$. Find the self-induction per unit length of such a cable.
Answer
478.5k+ views
Hint: An emf induced in a circuit due to the changes in the circuit's magnetic field is known as self-inductance. Here we have a coaxial cable consisting of two long cylinders of radius $a$ and $b$. We have to use ampere’s circuital law to find the self-inductance of the coaxial cable.
Formula used:
$B = \dfrac{{{\mu _0}I}}{{2\pi x}}$
where $B$ stands for the field,
${\mu _0}$ stands for the permeability of free space,
$I$ stands for the current flowing through the circuit,
$x$ stands for the radius of the cable.
$d\phi = BdA$
where $d\phi $ stands for the induced emf,
$B$ stands for the field, and
$dA$ stands for the small area considered.
Complete step by step answer:
The radius of the coil inside is given as $a$, and the coil surrounding has a radius $b$.
The field in the circuit is given by,
$B = \dfrac{{{\mu _0}I}}{{2\pi x}}$
The emf induced in a small area is given by,
$d\phi = BdA$
Substituting the value of $B$ in the above equation, we get
$d\phi = \dfrac{{{\mu _0}I}}{{2\pi x}}ldx$ (Considering a small rectangular area, $dA = ldx$)
To find the total induction, we have to integrate the above equation between the radii of the two cables, $a$ and $b$.
$d\phi = \int\limits_a^b {\dfrac{{{\mu _0}I}}{{2\pi x}}ldx} $
Taking the constants out,
$d\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\int\limits_a^b {\dfrac{{dx}}{x}} $
Integrating, we get
$\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\left[ {\ln x} \right]_a^b$
Applying the limits, we get
$\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\left[ {\ln b - \ln a} \right]$
This can be written as,
$\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\left[ {\ln b - \ln a} \right]$
When a current passes through a coil, flux is associated with the coil. The flux $\phi $is proportional to the current $I$ through the coil.
That is,
$\phi \propto I$
This can be written as,
$\phi = LI$
where $L$ is called the coefficient of self-induction or self-inductance.
Substituting this value for $\phi $,
$LI = \dfrac{{{\mu _0}Il}}{{2\pi }}\ln \dfrac{b}{a}$
Common terms on both sides are cancelled, we get
$L = \dfrac{{{\mu _0}l}}{{2\pi }}\ln \dfrac{b}{a}$
The self-inductance of a coaxial coil is thus, $L = \dfrac{{{\mu _0}l}}{{2\pi }}\ln \dfrac{b}{a}$
Note: The phenomenon by which a coil opposes the growth or decay of current through it by producing an emf. When $1A$ current passes through the coil, the coefficient of self-induction of a coil is numerically equal to the flux linked with the coil.
Formula used:
$B = \dfrac{{{\mu _0}I}}{{2\pi x}}$
where $B$ stands for the field,
${\mu _0}$ stands for the permeability of free space,
$I$ stands for the current flowing through the circuit,
$x$ stands for the radius of the cable.
$d\phi = BdA$
where $d\phi $ stands for the induced emf,
$B$ stands for the field, and
$dA$ stands for the small area considered.
Complete step by step answer:
The radius of the coil inside is given as $a$, and the coil surrounding has a radius $b$.
The field in the circuit is given by,
$B = \dfrac{{{\mu _0}I}}{{2\pi x}}$
The emf induced in a small area is given by,
$d\phi = BdA$
Substituting the value of $B$ in the above equation, we get
$d\phi = \dfrac{{{\mu _0}I}}{{2\pi x}}ldx$ (Considering a small rectangular area, $dA = ldx$)
To find the total induction, we have to integrate the above equation between the radii of the two cables, $a$ and $b$.
$d\phi = \int\limits_a^b {\dfrac{{{\mu _0}I}}{{2\pi x}}ldx} $
Taking the constants out,
$d\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\int\limits_a^b {\dfrac{{dx}}{x}} $
Integrating, we get
$\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\left[ {\ln x} \right]_a^b$
Applying the limits, we get
$\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\left[ {\ln b - \ln a} \right]$
This can be written as,
$\phi = \dfrac{{{\mu _0}Il}}{{2\pi }}\left[ {\ln b - \ln a} \right]$
When a current passes through a coil, flux is associated with the coil. The flux $\phi $is proportional to the current $I$ through the coil.
That is,
$\phi \propto I$
This can be written as,
$\phi = LI$
where $L$ is called the coefficient of self-induction or self-inductance.
Substituting this value for $\phi $,
$LI = \dfrac{{{\mu _0}Il}}{{2\pi }}\ln \dfrac{b}{a}$
Common terms on both sides are cancelled, we get
$L = \dfrac{{{\mu _0}l}}{{2\pi }}\ln \dfrac{b}{a}$
The self-inductance of a coaxial coil is thus, $L = \dfrac{{{\mu _0}l}}{{2\pi }}\ln \dfrac{b}{a}$
Note: The phenomenon by which a coil opposes the growth or decay of current through it by producing an emf. When $1A$ current passes through the coil, the coefficient of self-induction of a coil is numerically equal to the flux linked with the coil.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
