Answer
Verified
390.3k+ views
Hint: The magnetic density is forced by the product of the charge and velocity. The permeability is Henry per meter. Using these equations, we will compute the dimensional formula of magnetic density and permeability separately. Then, finally, we will divide these units.
Formula used:
\[\begin{align}
& B=\dfrac{F}{qv} \\
& \mu =\dfrac{H}{m} \\
\end{align}\]
Complete step by step answer:
The magnetic density is force by the product of the charge and velocity. The mathematical representation of the same is given as follows.
\[B=\dfrac{F}{qv}\]
The permeability is Henry per meter. The mathematical representation of the same is given as follows.
\[\mu =\dfrac{H}{m}\]
Using these equations, we will compute the dimensional formula of magnetic density and permeability separately.
Consider the formula for computing the magnetic density.
\[B=\dfrac{F}{qv}\]
Substitute the dimensional formula of the parameters such as force, charge and velocity.
\[B=\dfrac{[ML{{T}^{-2}}]}{[AT][L{{T}^{-1}}]}\]
Continue further computation.
\[B=[{{M}^{1}}{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]\]
Consider the formula for computing the permeability.
\[\mu =\dfrac{H}{m}\]
Substitute the dimensional formula of the parameters such as force, charge and velocity.
\[\mu =\dfrac{[ML{{T}^{-2}}]}{[{{A}^{2}}]}\]
Continue further computation.
\[\mu =[ML{{T}^{-2}}{{A}^{-2}}]\]
Now, we will divide the dimensional formula of the magnetic density by the dimensional formula of the permeability.
Consider the formula.
\[\dfrac{{{B}^{2}}}{2\mu }\]
Substitute the dimensional formula of the magnetic density and permeability.
\[\dfrac{{{B}^{2}}}{2\mu }=\dfrac{{{[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]}^{2}}}{[ML{{T}^{-2}}{{A}^{-2}}]}\]
Continue further computation.
\[\begin{align}
& \dfrac{{{B}^{2}}}{2\mu }=\dfrac{{{[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]}^{2}}}{[ML{{T}^{-2}}{{A}^{-2}}]} \\
& \Rightarrow \dfrac{{{B}^{2}}}{2\mu }=\dfrac{[{{M}^{2}}{{L}^{0}}{{T}^{-4}}{{A}^{-2}}]}{[ML{{T}^{-2}}{{A}^{-2}}]} \\
& \therefore \dfrac{{{B}^{2}}}{2\mu }=[M{{L}^{-1}}{{T}^{-2}}] \\
\end{align}\]
\[\therefore \] The dimensional formula of \[\dfrac{{{B}^{2}}}{2\mu }\] is \[[{{M}^{1}}{{L}^{-1}}{{T}^{-2}}]\]
So, the correct answer is “Option D”.
Note: There are many methods of finding the dimensional formula of equations, such as, by using the direct units of the parameters used in the equations, by further substitution of parameters within the parameters. In this case, we have used both methods, the first method is used for permeability and the second method is used for magnetic density.
Formula used:
\[\begin{align}
& B=\dfrac{F}{qv} \\
& \mu =\dfrac{H}{m} \\
\end{align}\]
Complete step by step answer:
The magnetic density is force by the product of the charge and velocity. The mathematical representation of the same is given as follows.
\[B=\dfrac{F}{qv}\]
The permeability is Henry per meter. The mathematical representation of the same is given as follows.
\[\mu =\dfrac{H}{m}\]
Using these equations, we will compute the dimensional formula of magnetic density and permeability separately.
Consider the formula for computing the magnetic density.
\[B=\dfrac{F}{qv}\]
Substitute the dimensional formula of the parameters such as force, charge and velocity.
\[B=\dfrac{[ML{{T}^{-2}}]}{[AT][L{{T}^{-1}}]}\]
Continue further computation.
\[B=[{{M}^{1}}{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]\]
Consider the formula for computing the permeability.
\[\mu =\dfrac{H}{m}\]
Substitute the dimensional formula of the parameters such as force, charge and velocity.
\[\mu =\dfrac{[ML{{T}^{-2}}]}{[{{A}^{2}}]}\]
Continue further computation.
\[\mu =[ML{{T}^{-2}}{{A}^{-2}}]\]
Now, we will divide the dimensional formula of the magnetic density by the dimensional formula of the permeability.
Consider the formula.
\[\dfrac{{{B}^{2}}}{2\mu }\]
Substitute the dimensional formula of the magnetic density and permeability.
\[\dfrac{{{B}^{2}}}{2\mu }=\dfrac{{{[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]}^{2}}}{[ML{{T}^{-2}}{{A}^{-2}}]}\]
Continue further computation.
\[\begin{align}
& \dfrac{{{B}^{2}}}{2\mu }=\dfrac{{{[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]}^{2}}}{[ML{{T}^{-2}}{{A}^{-2}}]} \\
& \Rightarrow \dfrac{{{B}^{2}}}{2\mu }=\dfrac{[{{M}^{2}}{{L}^{0}}{{T}^{-4}}{{A}^{-2}}]}{[ML{{T}^{-2}}{{A}^{-2}}]} \\
& \therefore \dfrac{{{B}^{2}}}{2\mu }=[M{{L}^{-1}}{{T}^{-2}}] \\
\end{align}\]
\[\therefore \] The dimensional formula of \[\dfrac{{{B}^{2}}}{2\mu }\] is \[[{{M}^{1}}{{L}^{-1}}{{T}^{-2}}]\]
So, the correct answer is “Option D”.
Note: There are many methods of finding the dimensional formula of equations, such as, by using the direct units of the parameters used in the equations, by further substitution of parameters within the parameters. In this case, we have used both methods, the first method is used for permeability and the second method is used for magnetic density.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE