
RMS velocity of a gas is calculated with the formula $\sqrt {\dfrac{{3PV}}{M}} $. Volume is increased by $3$ times, the RMS velocity of the gas at constant temperature is:
A.Increases by $3$ times
B.Decreases by$9$ times,
C.Increases by $\sqrt 3 $ times
D.Does not change
Answer
512.4k+ views
Hint: The relationship between $PV$ and $T$ can be used here to see how one would get affected by another and in turn how it will change the RMS velocity.
Step by step answer: Given:
The formula to calculate the RMS velocity of a gas: ${v_{rms}} = \sqrt {\dfrac{{3PV}}{M}} $
The increase in the volume: ${V_2} = 3{V_1}$
Let’s have a look at the given formula for RMS velocity of a gas:
${v_{rms}} = \sqrt {\dfrac{{3PV}}{M}} $
Let’s put subscript $1$ for initial conditions of pressure and volume to give:
${v_{rms}}_{_1} = \sqrt {\dfrac{{3{P_1}{V_1}}}{M}} $
Here, $M$ is the molar mass of the gas so that would remain constant.
Now, we will write the expression for RMS velocity after the increase in volume by using subscript $2$ as follows:
${v_{rms}}_{_2} = \sqrt {\dfrac{{3{P_2}{V_2}}}{M}} $
We are given that ${V_2} = 3{V_1}$ so we can substitute this in the above expression as follows:
${v_{rms}}_{_2} = \sqrt {\dfrac{{3{P_2}\left( {3{V_1}} \right)}}{M}} $ --- (1)
Now, we have to consider how it will affect the pressure and we can do that by using the ideal gas equation that relates pressure $\left( P \right)$ , volume $\left( V \right)$, amount $\left( n \right)$ and temperature $\left( T \right)$ of the gas as follows:
$PV = nRT$
Here, $R$ is the universal gas constant and has a fixed value.
For a given amount of gas and at constant temperature, the R.H.S. of this equation becomes constant which means L.H.S. of this equation would also be constant or we can write:
${P_1}{V_1} = {P_2}{V_2}$
We can use the given ${V_2} = 3{V_1}$ to determine the effect on pressure as follows:
$
\Rightarrow {P_2}\left( {3{V_1}} \right) = {P_1}{V_1}\\
\Rightarrow {P_2} = \dfrac{{{P_1}{V_1}}}{{3{V_1}}}\\
\Rightarrow {P_2} = \dfrac{{{P_1}}}{3}
$
Let’s substitute this in equation (1) as follows:
$
{v_{rms}}_{_2} = \sqrt {\dfrac{{3\left( {3{V_1}} \right)}}{M}\dfrac{{{P_1}}}{3}} \\
\Rightarrow {v_{rms}}_{_2} = \sqrt {\dfrac{{3{P_1}{V_1}}}{M}} \\
\Rightarrow {v_{rms}}_{_2}= {v_{rms}}_{_1}
$
Hence, the RMS velocity does not change which makes option D to be the correct one
Note: We can also deduce this by establishing that R.H.S. of the given formula is constant under given conditions so RMS velocity won’t change.
Step by step answer: Given:
The formula to calculate the RMS velocity of a gas: ${v_{rms}} = \sqrt {\dfrac{{3PV}}{M}} $
The increase in the volume: ${V_2} = 3{V_1}$
Let’s have a look at the given formula for RMS velocity of a gas:
${v_{rms}} = \sqrt {\dfrac{{3PV}}{M}} $
Let’s put subscript $1$ for initial conditions of pressure and volume to give:
${v_{rms}}_{_1} = \sqrt {\dfrac{{3{P_1}{V_1}}}{M}} $
Here, $M$ is the molar mass of the gas so that would remain constant.
Now, we will write the expression for RMS velocity after the increase in volume by using subscript $2$ as follows:
${v_{rms}}_{_2} = \sqrt {\dfrac{{3{P_2}{V_2}}}{M}} $
We are given that ${V_2} = 3{V_1}$ so we can substitute this in the above expression as follows:
${v_{rms}}_{_2} = \sqrt {\dfrac{{3{P_2}\left( {3{V_1}} \right)}}{M}} $ --- (1)
Now, we have to consider how it will affect the pressure and we can do that by using the ideal gas equation that relates pressure $\left( P \right)$ , volume $\left( V \right)$, amount $\left( n \right)$ and temperature $\left( T \right)$ of the gas as follows:
$PV = nRT$
Here, $R$ is the universal gas constant and has a fixed value.
For a given amount of gas and at constant temperature, the R.H.S. of this equation becomes constant which means L.H.S. of this equation would also be constant or we can write:
${P_1}{V_1} = {P_2}{V_2}$
We can use the given ${V_2} = 3{V_1}$ to determine the effect on pressure as follows:
$
\Rightarrow {P_2}\left( {3{V_1}} \right) = {P_1}{V_1}\\
\Rightarrow {P_2} = \dfrac{{{P_1}{V_1}}}{{3{V_1}}}\\
\Rightarrow {P_2} = \dfrac{{{P_1}}}{3}
$
Let’s substitute this in equation (1) as follows:
$
{v_{rms}}_{_2} = \sqrt {\dfrac{{3\left( {3{V_1}} \right)}}{M}\dfrac{{{P_1}}}{3}} \\
\Rightarrow {v_{rms}}_{_2} = \sqrt {\dfrac{{3{P_1}{V_1}}}{M}} \\
\Rightarrow {v_{rms}}_{_2}= {v_{rms}}_{_1}
$
Hence, the RMS velocity does not change which makes option D to be the correct one
Note: We can also deduce this by establishing that R.H.S. of the given formula is constant under given conditions so RMS velocity won’t change.
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE
