Answer
Verified
492.3k+ views
Hint: First of all factorise the denominator of the given expression that is \[12{{x}^{2}}-11x-15\] in its linear factors. Then write the numerator that is 46 + 13x in terms of these linear factors of the denominator.
Here, we have to resolve the following expression into partial fractions.
Let us consider the given expression as
\[D=\dfrac{46+13x}{12{{x}^{2}}-11x-15}\]
Let us consider, \[A=46+13x\]
And \[B=12{{x}^{2}}-11x-15\]
Therefore, \[D=\dfrac{A}{B}....\left( i \right)\]
First of all, we will factorize B.
In B, we can write \[11x=20x-9x\]
Therefore, we get
\[B=12{{x}^{2}}-\left( 20x-9x \right)-15\]
\[\Rightarrow B=12{{x}^{2}}-20x+9x-15\]
Or, \[B=\left( 12{{x}^{2}}-20x \right)+\left( 9x-15 \right)\]
By taking 4x common from \[\left( 12{{x}^{2}}-20x \right)\] and 3 common from \[\left( 9x-15 \right)\], we get
\[\Rightarrow B=4x\left( 3x-5 \right)+3\left( 3x-5 \right)\]
By taking \[\left( 3x-5 \right)\] common, we get,
\[B=\left( 3x-5 \right).\left( 4x+3 \right)\]
By putting the values of A and B in equation (i), we get
\[D=\dfrac{A}{B}=\dfrac{46+13x}{\left( 3x-5 \right).\left( 4x+3 \right)}\]
Now, to resolve D into partial fractions, let us consider,
\[D=\dfrac{P}{\left( 3x-5 \right)}+\dfrac{Q}{\left( 4x+3 \right)}.....\left( ii \right)\]
Or, \[D=\dfrac{46+13x}{\left( 3x-5 \right).\left( 4x+3 \right)}=\dfrac{P}{\left( 3x-5 \right)}+\dfrac{Q}{\left( 4x+3 \right)}\]
Now, we will solve for P and Q to find the partial fractions.
By simplifying RHS, we get
\[\dfrac{46+13x}{\left( 3x-5 \right).\left( 4x+3 \right)}=\dfrac{P\left( 4x+3 \right)+Q\left( 3x-5 \right)}{\left( 3x-5 \right)\left( 4x+3 \right)}\]
By cancelling the like terms from both sides, we get
\[46+13x=P\left( 4x+3 \right)+Q\left( 3x-5 \right)\]
By simplifying the above equation, we get
\[46+13x=4Px+3P+3Qx-5Q\]
We can write it as,
\[46+13x=\left( 4P+3Q \right)x+\left( 3P-5Q \right)\]
By equating the coefficient of x and constant terms from LHS and RHS, we get
\[4P+3Q=13....\left( iii \right)\]
And, \[3P-5Q=46....\left( iv \right)\]
Now, we will multiply equation (iii) by 3 and equation (iv) by 4.
We get,
\[12P+9Q=39....\left( v \right)\]
\[12P-20Q=184....\left( vi \right)\]
By subtracting equation (v) from equation (vi), we get,
\[\left( 12P-20Q \right)-\left( 12P+9Q \right)=184-39\]
\[\Rightarrow -20Q-9Q=145\]
\[\Rightarrow -29Q=145\]
Or, \[Q=\dfrac{145}{-29}\]
Therefore, we get
\[Q=-5\]
By putting the values of Q in equation (iii),
We get,
\[4P+3\left( -5 \right)=13\]
\[\Rightarrow 4P-15=13\]
\[\Rightarrow 4P=13+15\]
\[\Rightarrow 4P=28\]
\[\Rightarrow P=\dfrac{28}{4}\]
Therefore, we get P = 7.
By putting the values of P and Q in equation (ii). We get,
\[D=\dfrac{7}{\left( 3x-5 \right)}+\dfrac{\left( -5 \right)}{\left( 4x+3 \right)}\]
Therefore, \[\dfrac{46+13x}{12{{x}^{2}}-11x-15}=\dfrac{7}{\left( 3x-5 \right)}-\dfrac{5}{\left( 4x+3 \right)}\] has been resolved into partial fraction.
Note: Whenever the degree of denominator is greater than numerator, always first try to factorize the denominator in these types of questions. Then solve for A and B by solving
\[\dfrac{mx+n}{\left( x-a \right)\left( x-b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x-b \right)}\]
like in the above solution. Finally, students should always cross check if the partial fractions are giving the same expression as given in the question by solving it.
Here, we have to resolve the following expression into partial fractions.
Let us consider the given expression as
\[D=\dfrac{46+13x}{12{{x}^{2}}-11x-15}\]
Let us consider, \[A=46+13x\]
And \[B=12{{x}^{2}}-11x-15\]
Therefore, \[D=\dfrac{A}{B}....\left( i \right)\]
First of all, we will factorize B.
In B, we can write \[11x=20x-9x\]
Therefore, we get
\[B=12{{x}^{2}}-\left( 20x-9x \right)-15\]
\[\Rightarrow B=12{{x}^{2}}-20x+9x-15\]
Or, \[B=\left( 12{{x}^{2}}-20x \right)+\left( 9x-15 \right)\]
By taking 4x common from \[\left( 12{{x}^{2}}-20x \right)\] and 3 common from \[\left( 9x-15 \right)\], we get
\[\Rightarrow B=4x\left( 3x-5 \right)+3\left( 3x-5 \right)\]
By taking \[\left( 3x-5 \right)\] common, we get,
\[B=\left( 3x-5 \right).\left( 4x+3 \right)\]
By putting the values of A and B in equation (i), we get
\[D=\dfrac{A}{B}=\dfrac{46+13x}{\left( 3x-5 \right).\left( 4x+3 \right)}\]
Now, to resolve D into partial fractions, let us consider,
\[D=\dfrac{P}{\left( 3x-5 \right)}+\dfrac{Q}{\left( 4x+3 \right)}.....\left( ii \right)\]
Or, \[D=\dfrac{46+13x}{\left( 3x-5 \right).\left( 4x+3 \right)}=\dfrac{P}{\left( 3x-5 \right)}+\dfrac{Q}{\left( 4x+3 \right)}\]
Now, we will solve for P and Q to find the partial fractions.
By simplifying RHS, we get
\[\dfrac{46+13x}{\left( 3x-5 \right).\left( 4x+3 \right)}=\dfrac{P\left( 4x+3 \right)+Q\left( 3x-5 \right)}{\left( 3x-5 \right)\left( 4x+3 \right)}\]
By cancelling the like terms from both sides, we get
\[46+13x=P\left( 4x+3 \right)+Q\left( 3x-5 \right)\]
By simplifying the above equation, we get
\[46+13x=4Px+3P+3Qx-5Q\]
We can write it as,
\[46+13x=\left( 4P+3Q \right)x+\left( 3P-5Q \right)\]
By equating the coefficient of x and constant terms from LHS and RHS, we get
\[4P+3Q=13....\left( iii \right)\]
And, \[3P-5Q=46....\left( iv \right)\]
Now, we will multiply equation (iii) by 3 and equation (iv) by 4.
We get,
\[12P+9Q=39....\left( v \right)\]
\[12P-20Q=184....\left( vi \right)\]
By subtracting equation (v) from equation (vi), we get,
\[\left( 12P-20Q \right)-\left( 12P+9Q \right)=184-39\]
\[\Rightarrow -20Q-9Q=145\]
\[\Rightarrow -29Q=145\]
Or, \[Q=\dfrac{145}{-29}\]
Therefore, we get
\[Q=-5\]
By putting the values of Q in equation (iii),
We get,
\[4P+3\left( -5 \right)=13\]
\[\Rightarrow 4P-15=13\]
\[\Rightarrow 4P=13+15\]
\[\Rightarrow 4P=28\]
\[\Rightarrow P=\dfrac{28}{4}\]
Therefore, we get P = 7.
By putting the values of P and Q in equation (ii). We get,
\[D=\dfrac{7}{\left( 3x-5 \right)}+\dfrac{\left( -5 \right)}{\left( 4x+3 \right)}\]
Therefore, \[\dfrac{46+13x}{12{{x}^{2}}-11x-15}=\dfrac{7}{\left( 3x-5 \right)}-\dfrac{5}{\left( 4x+3 \right)}\] has been resolved into partial fraction.
Note: Whenever the degree of denominator is greater than numerator, always first try to factorize the denominator in these types of questions. Then solve for A and B by solving
\[\dfrac{mx+n}{\left( x-a \right)\left( x-b \right)}=\dfrac{A}{\left( x-a \right)}+\dfrac{B}{\left( x-b \right)}\]
like in the above solution. Finally, students should always cross check if the partial fractions are giving the same expression as given in the question by solving it.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths