
Resistivity of iron is $1 \times {10^{ - 7}}ohmm$. The resistance of the given wire of a particular thickness and length is $1ohm$. If the diameter and length of the wire both are doubled find the resistivity and resistance of the wire.
Answer
562.5k+ views
Hint Keep in mind that resistivity is an intrinsic property of a conductor and depends upon its material. In the expression relating resistance and resistivity of a conductor, substitute the given values to obtain the new resistance of the wire.
Formula used:
$\rho = \dfrac{{RA}}{l}$ where $\rho $is the resistivity, $A$is the area of cross-section, $l$is the length and $R$is the resistance of the conductor.
Complete step by step answer
The ratio of the potential difference to the current is called the electric resistance $R$ of the conductor.
Resistivity or specific resistance on the other hand is defined as the ratio of the intensity of electric field at any point within the conductor and the current density at that point. Resistivity is an intrinsic property of the conductor and therefore does not depend on its size. Thus if the diameter and length of the wire is changed, the value of the resistivity will remain the same.
The expression relating resistance and resistivity together is given as
$
\rho = \dfrac{{RA}}{l} \\
\Rightarrow R = \dfrac{{\rho l}}{A} \\
$
Where $R$is the resistance, $\rho $is the resistivity, $A = \pi {r^2}$$ = \dfrac{{\pi {d^2}}}{4}$is the area of cross-section, $r$is the radius, $d$is the diameter and $l$is the length of the wire.
Now in the question it is given that the both diameter and length of the wire is doubled such that
\[d' = 2d\]and $l' = 2l$
Therefore the new area of cross-section will be
$A' = \dfrac{{\pi d{'^2}}}{4} = \dfrac{{\pi {{\left( {2d} \right)}^2}}}{4} = \pi {d^2}$
$ \Rightarrow A = \dfrac{1}{4}A'$
The new length is $l' = 2l$
Therefore, the new resistance can be written as
$R' = \dfrac{{\rho l'}}{{A'}}$
$R' = \dfrac{{\rho 2l}}{{4A}} = \dfrac{{\rho l}}{{2A}} = 0.5R$
Now as the original resistance is $1ohm$so the new resistance becomes,
$R' = 0.5 \times 1 = 0.5ohm$
Therefore, the new resistance becomes half the original resistance.
Note Since the resistivity of a conductor is its intrinsic property, so it can be used to compare conductors of different materials on their ability to conduct electric current. Higher resistivity designates poor conductors and vice versa.
Formula used:
$\rho = \dfrac{{RA}}{l}$ where $\rho $is the resistivity, $A$is the area of cross-section, $l$is the length and $R$is the resistance of the conductor.
Complete step by step answer
The ratio of the potential difference to the current is called the electric resistance $R$ of the conductor.
Resistivity or specific resistance on the other hand is defined as the ratio of the intensity of electric field at any point within the conductor and the current density at that point. Resistivity is an intrinsic property of the conductor and therefore does not depend on its size. Thus if the diameter and length of the wire is changed, the value of the resistivity will remain the same.
The expression relating resistance and resistivity together is given as
$
\rho = \dfrac{{RA}}{l} \\
\Rightarrow R = \dfrac{{\rho l}}{A} \\
$
Where $R$is the resistance, $\rho $is the resistivity, $A = \pi {r^2}$$ = \dfrac{{\pi {d^2}}}{4}$is the area of cross-section, $r$is the radius, $d$is the diameter and $l$is the length of the wire.
Now in the question it is given that the both diameter and length of the wire is doubled such that
\[d' = 2d\]and $l' = 2l$
Therefore the new area of cross-section will be
$A' = \dfrac{{\pi d{'^2}}}{4} = \dfrac{{\pi {{\left( {2d} \right)}^2}}}{4} = \pi {d^2}$
$ \Rightarrow A = \dfrac{1}{4}A'$
The new length is $l' = 2l$
Therefore, the new resistance can be written as
$R' = \dfrac{{\rho l'}}{{A'}}$
$R' = \dfrac{{\rho 2l}}{{4A}} = \dfrac{{\rho l}}{{2A}} = 0.5R$
Now as the original resistance is $1ohm$so the new resistance becomes,
$R' = 0.5 \times 1 = 0.5ohm$
Therefore, the new resistance becomes half the original resistance.
Note Since the resistivity of a conductor is its intrinsic property, so it can be used to compare conductors of different materials on their ability to conduct electric current. Higher resistivity designates poor conductors and vice versa.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

