
What is represented by the equation $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$?
Answer
602.4k+ views
Hint: Put $r\cos \theta =x\ and\ r\sin \theta =y$. Square x and y. You have to prove that x = a, represents a line and prove that the equation also represents the equation of the circle.
Complete step-by-step answer:
Given the equation $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$…………………. (1)
Now let us consider $r\cos \theta =x\ and\ r\sin \theta =y$.
Now squaring and adding x and y, we get
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right] \\
\end{align}$
We know,
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \therefore {{x}^{2}}+{{y}^{2}}={{r}^{2}}...............\left( 2 \right) \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Now take $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$
Take, $\left( r\cos \theta -a \right)=0$
$\Rightarrow r\cos \theta =a$
We know $r\cos \theta =x$.
$\therefore x=a$, which represents a vertical straight line.
Take, $\left( r-a\cos \theta \right)=0$.
$\therefore r=a\cos \theta $
Now multiply r on LHS and RHS.
$\Rightarrow {{r}^{2}}=ar\cos \theta $
We know $r\cos \theta =x$.
$\Rightarrow {{r}^{2}}=ax$
Now substitute ${{r}^{2}}$ on equation (2).
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{r}^{2}} \\
& {{x}^{2}}+{{y}^{2}}=ax \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-ax=0 \\
& \left( {{x}^{2}}-ax \right)+{{y}^{2}}=0 \\
\end{align}$
Now this represents the equation of a circle.
Add ${{\left( \dfrac{a}{2} \right)}^{2}}$ with $\left( {{x}^{2}}-ax \right)$ and subtract ${{\left( \dfrac{a}{2} \right)}^{2}}$.
$\begin{align}
& \Rightarrow {{x}^{2}}-ax+{{\left( \dfrac{a}{2} \right)}^{2}}+{{y}^{2}}{{\left( \dfrac{a}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}} \\
\end{align}$
This is of the form of a circle with centre $\left( \dfrac{a}{2},0 \right)$ and radius $\dfrac{a}{2}$.
Thus, the combined equation represents a circle and a straight line.
$\therefore x=a$ represents a straight line
and ${{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}}$represents equation of a circle.
Note: Take $r\cos \theta =x\ and\ r\sin \theta =y$ to get the required results. In the question ‘r’ represents the radius of the circle. If you consider $x=a\cos \theta $ won’t provide desirable results.
Complete step-by-step answer:
Given the equation $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$…………………. (1)
Now let us consider $r\cos \theta =x\ and\ r\sin \theta =y$.
Now squaring and adding x and y, we get
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right] \\
\end{align}$
We know,
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \therefore {{x}^{2}}+{{y}^{2}}={{r}^{2}}...............\left( 2 \right) \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Now take $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$
Take, $\left( r\cos \theta -a \right)=0$
$\Rightarrow r\cos \theta =a$
We know $r\cos \theta =x$.
$\therefore x=a$, which represents a vertical straight line.
Take, $\left( r-a\cos \theta \right)=0$.
$\therefore r=a\cos \theta $
Now multiply r on LHS and RHS.
$\Rightarrow {{r}^{2}}=ar\cos \theta $
We know $r\cos \theta =x$.
$\Rightarrow {{r}^{2}}=ax$
Now substitute ${{r}^{2}}$ on equation (2).
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{r}^{2}} \\
& {{x}^{2}}+{{y}^{2}}=ax \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-ax=0 \\
& \left( {{x}^{2}}-ax \right)+{{y}^{2}}=0 \\
\end{align}$
Now this represents the equation of a circle.
Add ${{\left( \dfrac{a}{2} \right)}^{2}}$ with $\left( {{x}^{2}}-ax \right)$ and subtract ${{\left( \dfrac{a}{2} \right)}^{2}}$.
$\begin{align}
& \Rightarrow {{x}^{2}}-ax+{{\left( \dfrac{a}{2} \right)}^{2}}+{{y}^{2}}{{\left( \dfrac{a}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}} \\
\end{align}$
This is of the form of a circle with centre $\left( \dfrac{a}{2},0 \right)$ and radius $\dfrac{a}{2}$.
Thus, the combined equation represents a circle and a straight line.
$\therefore x=a$ represents a straight line
and ${{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}}$represents equation of a circle.
Note: Take $r\cos \theta =x\ and\ r\sin \theta =y$ to get the required results. In the question ‘r’ represents the radius of the circle. If you consider $x=a\cos \theta $ won’t provide desirable results.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

