What is represented by the equation $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$?
Answer
363.3k+ views
Hint: Put $r\cos \theta =x\ and\ r\sin \theta =y$. Square x and y. You have to prove that x = a, represents a line and prove that the equation also represents the equation of the circle.
Complete step-by-step answer:
Given the equation $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$…………………. (1)
Now let us consider $r\cos \theta =x\ and\ r\sin \theta =y$.
Now squaring and adding x and y, we get
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right] \\
\end{align}$
We know,
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \therefore {{x}^{2}}+{{y}^{2}}={{r}^{2}}...............\left( 2 \right) \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Now take $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$
Take, $\left( r\cos \theta -a \right)=0$
$\Rightarrow r\cos \theta =a$
We know $r\cos \theta =x$.
$\therefore x=a$, which represents a vertical straight line.
Take, $\left( r-a\cos \theta \right)=0$.
$\therefore r=a\cos \theta $
Now multiply r on LHS and RHS.
$\Rightarrow {{r}^{2}}=ar\cos \theta $
We know $r\cos \theta =x$.
$\Rightarrow {{r}^{2}}=ax$
Now substitute ${{r}^{2}}$ on equation (2).
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{r}^{2}} \\
& {{x}^{2}}+{{y}^{2}}=ax \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-ax=0 \\
& \left( {{x}^{2}}-ax \right)+{{y}^{2}}=0 \\
\end{align}$
Now this represents the equation of a circle.
Add ${{\left( \dfrac{a}{2} \right)}^{2}}$ with $\left( {{x}^{2}}-ax \right)$ and subtract ${{\left( \dfrac{a}{2} \right)}^{2}}$.
$\begin{align}
& \Rightarrow {{x}^{2}}-ax+{{\left( \dfrac{a}{2} \right)}^{2}}+{{y}^{2}}{{\left( \dfrac{a}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}} \\
\end{align}$
This is of the form of a circle with centre $\left( \dfrac{a}{2},0 \right)$ and radius $\dfrac{a}{2}$.
Thus, the combined equation represents a circle and a straight line.
$\therefore x=a$ represents a straight line
and ${{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}}$represents equation of a circle.
Note: Take $r\cos \theta =x\ and\ r\sin \theta =y$ to get the required results. In the question ‘r’ represents the radius of the circle. If you consider $x=a\cos \theta $ won’t provide desirable results.
Complete step-by-step answer:
Given the equation $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$…………………. (1)
Now let us consider $r\cos \theta =x\ and\ r\sin \theta =y$.
Now squaring and adding x and y, we get
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{\left( r\cos \theta \right)}^{2}}+{{\left( r\sin \theta \right)}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}\left[ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right] \\
\end{align}$
We know,
$\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \therefore {{x}^{2}}+{{y}^{2}}={{r}^{2}}...............\left( 2 \right) \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Now take $\left( r\cos \theta -a \right)\left( r-a\cos \theta \right)=0$
Take, $\left( r\cos \theta -a \right)=0$
$\Rightarrow r\cos \theta =a$
We know $r\cos \theta =x$.
$\therefore x=a$, which represents a vertical straight line.
Take, $\left( r-a\cos \theta \right)=0$.
$\therefore r=a\cos \theta $
Now multiply r on LHS and RHS.
$\Rightarrow {{r}^{2}}=ar\cos \theta $
We know $r\cos \theta =x$.
$\Rightarrow {{r}^{2}}=ax$
Now substitute ${{r}^{2}}$ on equation (2).
$\begin{align}
& {{x}^{2}}+{{y}^{2}}={{r}^{2}} \\
& {{x}^{2}}+{{y}^{2}}=ax \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-ax=0 \\
& \left( {{x}^{2}}-ax \right)+{{y}^{2}}=0 \\
\end{align}$
Now this represents the equation of a circle.
Add ${{\left( \dfrac{a}{2} \right)}^{2}}$ with $\left( {{x}^{2}}-ax \right)$ and subtract ${{\left( \dfrac{a}{2} \right)}^{2}}$.
$\begin{align}
& \Rightarrow {{x}^{2}}-ax+{{\left( \dfrac{a}{2} \right)}^{2}}+{{y}^{2}}{{\left( \dfrac{a}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}} \\
\end{align}$
This is of the form of a circle with centre $\left( \dfrac{a}{2},0 \right)$ and radius $\dfrac{a}{2}$.
Thus, the combined equation represents a circle and a straight line.
$\therefore x=a$ represents a straight line
and ${{\left( x-\dfrac{a}{2} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{a}{2} \right)}^{2}}$represents equation of a circle.
Note: Take $r\cos \theta =x\ and\ r\sin \theta =y$ to get the required results. In the question ‘r’ represents the radius of the circle. If you consider $x=a\cos \theta $ won’t provide desirable results.
Last updated date: 30th Sep 2023
•
Total views: 363.3k
•
Views today: 5.63k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

The poet says Beauty is heard in Can you hear beauty class 6 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
