
What is the remainder when ${{7}^{63}}$ is divided by 344?
(a) 1
(b) 343
(c) 338
(d) None of these
Answer
510.3k+ views
Hint: First of all use the formula of exponents given s ${{a}^{m\times n}}={{\left( {{a}^{m}} \right)}^{n}}$ and write ${{7}^{63}}$ as ${{\left( {{7}^{3}} \right)}^{21}}$. Find the cube of 7 inside the bracket and write 343 = 344 – 1. Now, use the binomial expansion of the expression
${{\left( x+y \right)}^{n}}$ given as ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+....+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$ and substitute x = 344 and y = -1. Write the last term -1 as – (344 – 343) and accordingly write the remainder of the expression when it is divided by 344.
Complete step by step solution:
Here we have been asked to find the remainder of the expression ${{7}^{63}}$ when it is divided by 344. We need to simplify the dividend ${{7}^{63}}$ by using the binomial expansion formula.
Now, using the formula of exponents given as ${{a}^{m\times n}}={{\left( {{a}^{m}} \right)}^{n}}$ we can write ${{7}^{63}}$ equal to ${{\left( {{7}^{3}} \right)}^{21}}$, so cubing 7 inside the bracket we get,
$\Rightarrow {{7}^{63}}={{\left( 343 \right)}^{21}}$
The base number in the R.H.S can be written as 343 = 344 – 1, so we have,
$\Rightarrow {{7}^{63}}={{\left( 344-1 \right)}^{21}}$
We know that the expansion formula of the binomial expression ${{\left( x+y \right)}^{n}}$ is given as ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+....+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$, so substituting x = 344 and y = -1 we get,
\[\begin{align}
& \Rightarrow {{\left( 344-1 \right)}^{21}}={}^{21}{{C}_{0}}{{\left( 344 \right)}^{21}}{{\left( -1 \right)}^{0}}+{}^{21}{{C}_{1}}{{\left( 344 \right)}^{21-1}}{{\left( -1 \right)}^{1}}+....+{}^{21}{{C}_{21}}{{\left( 344 \right)}^{0}}{{\left( -1 \right)}^{21}} \\
& \Rightarrow {{\left( 344-1 \right)}^{21}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-1 \\
& \Rightarrow {{7}^{63}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-1 \\
\end{align}\]
We can write the last term which is – 1 as – (344 – 343) so we get,
\[\begin{align}
& \Rightarrow {{7}^{63}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-\left( 344-343 \right) \\
& \Rightarrow {{7}^{63}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-344+343 \\
\end{align}\]
Clearly we can see that all the terms contain 344 except the last term which is 343 so when we divide the expression by 344 then all the terms will get divided except the last term. Therefore, the remainder of the expression $\left( \dfrac{{{7}^{63}}}{344} \right)$ will be equal to 343.
So, the correct answer is “Option b”.
Note: Note that we have written the last term –1 as –344 + 343 because if we leave it as –1 and will divide the expansion with 344 then the remainder will turn out to be negative which is not possible according to Euclid's division algorithm. So do not think that the last term is –1 so the remainder will be 1 as it will be a wrong approach.
${{\left( x+y \right)}^{n}}$ given as ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+....+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$ and substitute x = 344 and y = -1. Write the last term -1 as – (344 – 343) and accordingly write the remainder of the expression when it is divided by 344.
Complete step by step solution:
Here we have been asked to find the remainder of the expression ${{7}^{63}}$ when it is divided by 344. We need to simplify the dividend ${{7}^{63}}$ by using the binomial expansion formula.
Now, using the formula of exponents given as ${{a}^{m\times n}}={{\left( {{a}^{m}} \right)}^{n}}$ we can write ${{7}^{63}}$ equal to ${{\left( {{7}^{3}} \right)}^{21}}$, so cubing 7 inside the bracket we get,
$\Rightarrow {{7}^{63}}={{\left( 343 \right)}^{21}}$
The base number in the R.H.S can be written as 343 = 344 – 1, so we have,
$\Rightarrow {{7}^{63}}={{\left( 344-1 \right)}^{21}}$
We know that the expansion formula of the binomial expression ${{\left( x+y \right)}^{n}}$ is given as ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+....+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$, so substituting x = 344 and y = -1 we get,
\[\begin{align}
& \Rightarrow {{\left( 344-1 \right)}^{21}}={}^{21}{{C}_{0}}{{\left( 344 \right)}^{21}}{{\left( -1 \right)}^{0}}+{}^{21}{{C}_{1}}{{\left( 344 \right)}^{21-1}}{{\left( -1 \right)}^{1}}+....+{}^{21}{{C}_{21}}{{\left( 344 \right)}^{0}}{{\left( -1 \right)}^{21}} \\
& \Rightarrow {{\left( 344-1 \right)}^{21}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-1 \\
& \Rightarrow {{7}^{63}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-1 \\
\end{align}\]
We can write the last term which is – 1 as – (344 – 343) so we get,
\[\begin{align}
& \Rightarrow {{7}^{63}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-\left( 344-343 \right) \\
& \Rightarrow {{7}^{63}}={{\left( 344 \right)}^{21}}-{}^{21}{{C}_{1}}{{\left( 344 \right)}^{20}}+{}^{21}{{C}_{2}}{{\left( 344 \right)}^{19}}+....-344+343 \\
\end{align}\]
Clearly we can see that all the terms contain 344 except the last term which is 343 so when we divide the expression by 344 then all the terms will get divided except the last term. Therefore, the remainder of the expression $\left( \dfrac{{{7}^{63}}}{344} \right)$ will be equal to 343.
So, the correct answer is “Option b”.
Note: Note that we have written the last term –1 as –344 + 343 because if we leave it as –1 and will divide the expansion with 344 then the remainder will turn out to be negative which is not possible according to Euclid's division algorithm. So do not think that the last term is –1 so the remainder will be 1 as it will be a wrong approach.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

