Answer

Verified

348.9k+ views

**Hint:**To solve this question we should have a knowledge of Binomial Expansion Theorem. The Theorem states that the expansion of any power having two numbers in addition or subtraction ${{\left( x+y \right)}^{n}}$ of a binomial $\left( x+y \right)$ as a certain sum of products. We will also be required to see the power of the number given to us. On substituting the number on the formula we will find the remainder.

**Complete step by step answer:**

The question asks us to find the remainder when a number which is given in the problem which is ${{\left( 54 \right)}^{53}}$, is divided by $11$. The first step is to write $54$ as a difference or sum of two numbers. The number when written in binomial form should be such that one of the numbers is divisible by $11$. On seeing the power of $54$, which is given as $53$, is an odd number. So the formula used will be:

$\Rightarrow {{\left( x-1 \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}{{\left( -1 \right)}^{n}}+{}^{n}{{C}_{1}}{{x}^{1}}{{\left( -1 \right)}^{n-1}}+.........+{}^{n}{{C}_{n}}{{x}^{n}}{{\left( -1 \right)}^{0}}$

Since the number $55$ is divisible by $11$, on substituting the number $55$ in place of $x$, and $53$ in place $n$ we get:

$\Rightarrow {{\left( 55-1 \right)}^{53}}={}^{53}{{C}_{0}}{{55}^{0}}{{\left( -1 \right)}^{53}}+{}^{53}{{C}_{1}}{{\left( 55 \right)}^{1}}{{\left( -1 \right)}^{52}}+.........+{}^{53}{{C}_{53}}{{\left( 55 \right)}^{53}}{{\left( -1 \right)}^{0}}$

On analysing the expansion we see that the value from the second term contains $55$ as one of their term, so the terms from second place will be divisible by $11$ as the number $55$ is divisible by $11$, so the number which is not divisible by $11$ is just the first term. The expansion gives us:

$\Rightarrow {}^{n}{{C}_{0}}{{\left( 55 \right)}^{0}}{{\left( -1 \right)}^{n}}=-1$

Now writing it in terms of $55$ we get:

$\Rightarrow 55k-1$

The above expression could be further written as:

$\Rightarrow 55k-1+54-54$

$\Rightarrow 55k-55+54$

$\Rightarrow 55\left( k-1 \right)+54$

$\Rightarrow 55\left( k-1 \right)+44+10$

$\Rightarrow 11\left( 5k-4 \right)+10$

On analysing the above expression we get $10$ as the remainder.

$\therefore $ Remainder of ${{\left( 54 \right)}^{53}}$ when divided by $11$ is Option $D)10$ .

**So, the correct answer is “Option D”.**

**Note:**To solve the problem we need to remember the formula $\text{Dividend = Divisor }\!\!\times\!\!\text{ Quotient + Remainder}$. The number $54$ could have been written as $\left( 44+10 \right)$ or $\left( 66-12 \right)$ or there were many other ways too. But we chose to write as $\left( 55-1 \right)$ because of the presence of $1$ as one of the numbers, which makes the calculation easier.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers