Answer
Verified
449.1k+ views
Hint: To obtain the relation between coefficient of friction and the angle of friction we need to know how we define the following. The coefficient to friction is basically responsible for frictional force that holds the body at rest. The angle of friction is defined as the angle between the resultant of the normal and the frictional force and the normal force of a body on ground. Now to obtain the relation, first we have drawn the diagram and using trigonometric definition we can obtain the required result.
Complete step-by-step answer:
To begin with let us consider a body of mass m resting on the ground as shown in the fig below.
Let us say we applied a force F on the body at rest. The body will still be at rest due to the frictional force. At one point the frictional force will be equal to the applied force at equilibrium. The frictional force at this point is equal to ${{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}$ times the normal force. This can mathematically be represented as,
$\begin{align}
& \text{f =}{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{N} \;\;\;\;\;\;\;\text{Since N=mg} \\
& \text{f =}{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{mg} \\
\end{align}$
If we see in the above diagram the angle between the resultant i.e. of( frictional force and the normal force)and the normal force is denoted by $\text{ }\!\!\theta\!\!\text{ }$. Now as we wish to calculate this angle let us write the parallel vector of frictional force to the head of the normal vector. Since the normal and the frictional force are perpendicular to each other by trigonometric definition of $\text{tan }\!\!\theta\!\!\text{ }$
We get,
$\text{tan }\!\!\theta\!\!\text{ }=\dfrac{\text{f}}{\text{N}}$ Since, $\text{f =}{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{mg}$ and N= mg,
$\text{tan }\!\!\theta\!\!\text{ }=\dfrac{{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{mg}}{\text{mg}}={{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}$.
So, the correct answer is “Option C”.
Note:
It is to be noted the numerical value of angle of friction and the angle of repose is the same. The angle of repose is the angle between the resultant of the normal and the frictional force, and the normal force of a body on ground. If we observe this definition it is the same as the angle of friction but the difference is that the body itself is on an inclined surface and not horizontal surface.
Complete step-by-step answer:
To begin with let us consider a body of mass m resting on the ground as shown in the fig below.
Let us say we applied a force F on the body at rest. The body will still be at rest due to the frictional force. At one point the frictional force will be equal to the applied force at equilibrium. The frictional force at this point is equal to ${{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}$ times the normal force. This can mathematically be represented as,
$\begin{align}
& \text{f =}{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{N} \;\;\;\;\;\;\;\text{Since N=mg} \\
& \text{f =}{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{mg} \\
\end{align}$
If we see in the above diagram the angle between the resultant i.e. of( frictional force and the normal force)and the normal force is denoted by $\text{ }\!\!\theta\!\!\text{ }$. Now as we wish to calculate this angle let us write the parallel vector of frictional force to the head of the normal vector. Since the normal and the frictional force are perpendicular to each other by trigonometric definition of $\text{tan }\!\!\theta\!\!\text{ }$
We get,
$\text{tan }\!\!\theta\!\!\text{ }=\dfrac{\text{f}}{\text{N}}$ Since, $\text{f =}{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{mg}$ and N= mg,
$\text{tan }\!\!\theta\!\!\text{ }=\dfrac{{{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}\text{mg}}{\text{mg}}={{\text{ }\!\!\mu\!\!\text{ }}_{\text{S}}}$.
So, the correct answer is “Option C”.
Note:
It is to be noted the numerical value of angle of friction and the angle of repose is the same. The angle of repose is the angle between the resultant of the normal and the frictional force, and the normal force of a body on ground. If we observe this definition it is the same as the angle of friction but the difference is that the body itself is on an inclined surface and not horizontal surface.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell