Answer
Verified
455.4k+ views
Hint: We solve for selection of children using a method of combination. Write initials of each couple as indication to the number of their sons. Count total number of children. Choose a pair of children from each collection of sons by different couples.
* Combination method helps us to find number of ways to choose r values from n values using the formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]where factorial of a number opens as \[n! = n.(n - 1).(n - 2)....3.2.1\]
Complete step-by-step answer:
We are given 4 persons Rekha, Shivram, Varsha nad Ajoy
We are given Rekha and Shivram had 4 sons, Varsha and Ajoy had 4 sons, Varsha and Shivram had 3 sons and Rekha and Ajoy had 3 sons.
Let us denote each of them by initials of their name, i.e.
Rekha-R; Shivram-S; Varsha-V and Ajoy-A
From each couple we write number of sons.
\[R + S = 4\] … (1)
\[V + A = 4\] … (2)
\[V + S = 3\] … (3)
\[R + A = 3\] … (4)
Total number of children\[ = (R + S) + (V + A) + (V + S) + (R + A)\]
\[ \Rightarrow \]Total number of children\[ = 4 + 4 + 3 + 3\]
\[ \Rightarrow \]Total number of children\[ = 14\] … (5)
We have to choose 8 children from 14 children in such a way that each person has equal number of sons in the selection.
If we choose 2 children from each set of children from equations (1), (2), (3) and (4) we will have total 8 children from 4 couples. In this way each of them will have equal number of children in the selection.
From equation (1):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (1) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (6)
From equation (2):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (2) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (7)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (3) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (8)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (4) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (9)
Now selection of 8 children from 14 children is given by the product of equations (6), (7), (8) and (9)
Number of ways of selection \[{ = ^4}{C_2}{ \times ^4}{C_2}{ \times ^3}{C_2}{ \times ^3}{C_2}\]
Substitute the values from equations (6), (7), (8) and (9)
\[ \Rightarrow \]Number of ways of selection \[ = 6 \times 6 \times 3 \times 3\]
\[ \Rightarrow \]Number of ways of selection \[ = 324\]
Number of ways of selection of 8 children from 14 children is 324.
Note: Students might solve for the selection by substituting the value of n as 14 and r as 8 directly into the formula for combinations. This is the wrong process as the value obtained from this will be the number of ways of selection of 8 children from 14 children with no condition. So it will have all combinations and that may not have equal numbers of children for each person.
* Combination method helps us to find number of ways to choose r values from n values using the formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]where factorial of a number opens as \[n! = n.(n - 1).(n - 2)....3.2.1\]
Complete step-by-step answer:
We are given 4 persons Rekha, Shivram, Varsha nad Ajoy
We are given Rekha and Shivram had 4 sons, Varsha and Ajoy had 4 sons, Varsha and Shivram had 3 sons and Rekha and Ajoy had 3 sons.
Let us denote each of them by initials of their name, i.e.
Rekha-R; Shivram-S; Varsha-V and Ajoy-A
From each couple we write number of sons.
\[R + S = 4\] … (1)
\[V + A = 4\] … (2)
\[V + S = 3\] … (3)
\[R + A = 3\] … (4)
Total number of children\[ = (R + S) + (V + A) + (V + S) + (R + A)\]
\[ \Rightarrow \]Total number of children\[ = 4 + 4 + 3 + 3\]
\[ \Rightarrow \]Total number of children\[ = 14\] … (5)
We have to choose 8 children from 14 children in such a way that each person has equal number of sons in the selection.
If we choose 2 children from each set of children from equations (1), (2), (3) and (4) we will have total 8 children from 4 couples. In this way each of them will have equal number of children in the selection.
From equation (1):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (1) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (6)
From equation (2):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (2) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (7)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (3) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (8)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (4) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (9)
Now selection of 8 children from 14 children is given by the product of equations (6), (7), (8) and (9)
Number of ways of selection \[{ = ^4}{C_2}{ \times ^4}{C_2}{ \times ^3}{C_2}{ \times ^3}{C_2}\]
Substitute the values from equations (6), (7), (8) and (9)
\[ \Rightarrow \]Number of ways of selection \[ = 6 \times 6 \times 3 \times 3\]
\[ \Rightarrow \]Number of ways of selection \[ = 324\]
Number of ways of selection of 8 children from 14 children is 324.
Note: Students might solve for the selection by substituting the value of n as 14 and r as 8 directly into the formula for combinations. This is the wrong process as the value obtained from this will be the number of ways of selection of 8 children from 14 children with no condition. So it will have all combinations and that may not have equal numbers of children for each person.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE