
Reduction of nitrobenzene in the presence of $Zn/N{H_4}Cl$ gives:
A. hydrazobenzene
B. aniline
C. azobenzene
D. N- phenyl hydroxylamine
Answer
495.3k+ views
Hint: The zinc dust along with ammonium chloride act as a mild reducing agent and they help to reduce a double bonded oxygen group (as in the case of a nitro group) to oxime (or simply to a hydroxyl group). The zinc acts as an electron pair donor to get converted into its bivalent cation.
Complete step by step answer:
The reaction of nitrobenzene with zinc dust in the presence of ammonium chloride is as follows:
$Ph - N{O_2}\xrightarrow{{2{e^ - }/Z{n^{2 + }}}}Ph - N = O\xrightarrow{{2{e^ - }/Z{n^{ + 2}}}}Ph - NH(OH)$
Here, $Ph = $ Phenyl group i.e. benzene with a free valency.
In the above reaction mechanism, the nitrogen atom of the nitro group is partially positive charged and there is a transfer of one electron from the zinc atom to the nitrogen centre and due to this, one electron of the $N = O$ bond jumps over the oxygen atom and the other to the nitrogen atom. Thus, on reaction of protons with both the $ - {O^ - }$ centers give a N,N-dihydroxy benzene which is unstable because of the presence of two hydroxyl groups over it. Die to this, it suffers de hydration and there is a loss of one water molecule. This forms the nitrosobenzene (the middle compound) which again undergoes reaction with two electrons from the zinc dust to produce N- phenyl hydroxylamine (the third product).
So, the correct answer is OptionD .
Note:
The ammonium salts such as ammonium chloride act as a promoter of the zinc reduction of nitrobenzene. $Zn/N{H_4}Cl$acts as a mild reducing agent and helps in the reduction of nitrobenzene. The reduction of any functional group means to decrease the oxidation state of the central atom of the substituent.
Complete step by step answer:
The reaction of nitrobenzene with zinc dust in the presence of ammonium chloride is as follows:
$Ph - N{O_2}\xrightarrow{{2{e^ - }/Z{n^{2 + }}}}Ph - N = O\xrightarrow{{2{e^ - }/Z{n^{ + 2}}}}Ph - NH(OH)$
Here, $Ph = $ Phenyl group i.e. benzene with a free valency.
In the above reaction mechanism, the nitrogen atom of the nitro group is partially positive charged and there is a transfer of one electron from the zinc atom to the nitrogen centre and due to this, one electron of the $N = O$ bond jumps over the oxygen atom and the other to the nitrogen atom. Thus, on reaction of protons with both the $ - {O^ - }$ centers give a N,N-dihydroxy benzene which is unstable because of the presence of two hydroxyl groups over it. Die to this, it suffers de hydration and there is a loss of one water molecule. This forms the nitrosobenzene (the middle compound) which again undergoes reaction with two electrons from the zinc dust to produce N- phenyl hydroxylamine (the third product).
So, the correct answer is OptionD .
Note:
The ammonium salts such as ammonium chloride act as a promoter of the zinc reduction of nitrobenzene. $Zn/N{H_4}Cl$acts as a mild reducing agent and helps in the reduction of nitrobenzene. The reduction of any functional group means to decrease the oxidation state of the central atom of the substituent.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
