
what is the ratio of the mean speed of $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecules to the RMS speed of a $\text{ }{{\text{O}}_{2}}\text{ }$molecule at the same T?
A) $\text{ }{{\left( \dfrac{3\text{ }\!\!\pi\!\!\text{ }}{7} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$
B) $\text{ }{{\left( \dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$
C) $\text{ }{{\left( 3\text{ }\!\!\pi\!\!\text{ } \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$
D) $\text{ }{{\left( \dfrac{\text{4 }\!\!\pi\!\!\text{ }}{9} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$
Answer
555k+ views
Hint: The mean square speed of the gas is given as, $\text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ }$and the root mean square (RMS) speed of the gas molecules is equal to the average speed of particles. It is given as, $\text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }$.where, R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Complete step by step solution:
We know that the mean speed is an average of the speed particles. It is a square root of the average velocity of the molecules in a gas.
The root mean square speed is given as,
$\text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
The root mean square (RMS) speed is used to measure the average speed of particles in a gas. Mathematically it is represented as follows
$\text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Let’s first calculate the molecular weight of ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$ and oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$.molecular weight $\text{ }{{\text{O}}_{\text{3}}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{\text{3}}}\text{ }=\text{ 3}\times \left( 16 \right)\text{ = 48 }$
The molecular weight of oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{2}}\text{ }=\text{ 2}\times \left( 16 \right)\text{ = 32 }$
The mean speed ( $\text{ }{{\text{V}}_{\text{mean}}}\text{ }$) for the ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule is written as,
$\text{ mean speed of }{{\text{O}}_{\text{3}}}\left( {{\text{V}}_{\text{mean}}} \right)\text{= }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\times \text{48}}}\text{ }$ (1)
Let’s this as an equation (1) .now the root mean square or RMS speed ($\text{ }{{\text{V}}_{\text{rms}}}\text{ }$) for oxygen gas is written as,
$\text{ rms speed of }{{\text{O}}_{\text{2}}}\text{ molecule }\left( {{\text{V}}_{\text{rms}}} \right)\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ =}\sqrt{\dfrac{\text{3RT}}{32}\text{ }}\text{ }$ (2)
We are interested to determine the ratio of the mean speed of a $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule to the RMS speed of the oxygen gas. Let’s divide equation (1) by equation (2).On dividing we have,
$\begin{align}
& \text{ }\dfrac{\text{mean speed of }{{\text{O}}_{\text{3}}}}{\text{rms speed of }{{\text{O}}_{\text{2}}}}\text{ = }\dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\dfrac{\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}}{\sqrt{\dfrac{\text{3RT}}{\text{32}}\text{ }}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}\text{ }\times \text{ }\sqrt{\dfrac{32}{\text{3RT}}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ } \\
\end{align}$
Thus the ratio of the mean speed of ozone gas and to the root mean square speed of oxygen gas is equal to, $\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ }$or $\text{ }{{\left( \dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$.
Hence, (B) is the correct option.
Note: Note that, for a particular gas the ratio of the speed of rms to the average speed is equal to,
$\text{ }\dfrac{{{\text{V}}_{\text{rms}}}}{{{\text{V}}_{\text{mean}}}}\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{:}\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\text{3}}\text{:}\sqrt{\dfrac{\text{8}}{\text{ }\!\!\pi\!\!\text{ }}}\text{ = 1}\text{.181 : 1 }$
This relation is applicable for the same gas only.
Complete step by step solution:
We know that the mean speed is an average of the speed particles. It is a square root of the average velocity of the molecules in a gas.
The root mean square speed is given as,
$\text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
The root mean square (RMS) speed is used to measure the average speed of particles in a gas. Mathematically it is represented as follows
$\text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }$
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Let’s first calculate the molecular weight of ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$ and oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$.molecular weight $\text{ }{{\text{O}}_{\text{3}}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{\text{3}}}\text{ }=\text{ 3}\times \left( 16 \right)\text{ = 48 }$
The molecular weight of oxygen gas $\text{ }{{\text{O}}_{2}}\text{ }$is:
$\text{ MW of }{{\text{O}}_{2}}\text{ }=\text{ 2}\times \left( 16 \right)\text{ = 32 }$
The mean speed ( $\text{ }{{\text{V}}_{\text{mean}}}\text{ }$) for the ozone $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule is written as,
$\text{ mean speed of }{{\text{O}}_{\text{3}}}\left( {{\text{V}}_{\text{mean}}} \right)\text{= }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\times \text{48}}}\text{ }$ (1)
Let’s this as an equation (1) .now the root mean square or RMS speed ($\text{ }{{\text{V}}_{\text{rms}}}\text{ }$) for oxygen gas is written as,
$\text{ rms speed of }{{\text{O}}_{\text{2}}}\text{ molecule }\left( {{\text{V}}_{\text{rms}}} \right)\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ =}\sqrt{\dfrac{\text{3RT}}{32}\text{ }}\text{ }$ (2)
We are interested to determine the ratio of the mean speed of a $\text{ }{{\text{O}}_{\text{3}}}\text{ }$molecule to the RMS speed of the oxygen gas. Let’s divide equation (1) by equation (2).On dividing we have,
$\begin{align}
& \text{ }\dfrac{\text{mean speed of }{{\text{O}}_{\text{3}}}}{\text{rms speed of }{{\text{O}}_{\text{2}}}}\text{ = }\dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\dfrac{\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}}{\sqrt{\dfrac{\text{3RT}}{\text{32}}\text{ }}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ 48}}}\text{ }\times \text{ }\sqrt{\dfrac{32}{\text{3RT}}} \\
& \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ } \\
\end{align}$
Thus the ratio of the mean speed of ozone gas and to the root mean square speed of oxygen gas is equal to, $\sqrt{\dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }}}\text{ }$or $\text{ }{{\left( \dfrac{16}{9\text{ }\!\!\pi\!\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }$.
Hence, (B) is the correct option.
Note: Note that, for a particular gas the ratio of the speed of rms to the average speed is equal to,
$\text{ }\dfrac{{{\text{V}}_{\text{rms}}}}{{{\text{V}}_{\text{mean}}}}\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{:}\sqrt{\dfrac{\text{8RT}}{\text{ }\!\!\pi\!\!\text{ M}}}\text{ = }\sqrt{\text{3}}\text{:}\sqrt{\dfrac{\text{8}}{\text{ }\!\!\pi\!\!\text{ }}}\text{ = 1}\text{.181 : 1 }$
This relation is applicable for the same gas only.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

