Answer
Verified
444.9k+ views
Hint: First simplify the given equation by substituting $ x = \tan \theta $ . After simplification, use the range of $ \sin \theta $ to find the range of the given expression. You can use the fact that $ {\tan ^{ - 1}}x $ is an increasing function. So the inequality will not change.
Complete step-by-step answer:
The given equation is
$ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
To simplify this equation, put $ x = \tan \theta $ . Then
$ \dfrac{{2x}}{{1 + {x^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} $
We have a formula,
$ \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta $
By using this formula, we can write
$ \dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $
Now, we know that the range of $ \sin 2\theta $ is $ \left[ { - 1,1} \right] $ . Because the maximum value of $ \sin 2\theta $ is 1 and its minimum value is -1. Also it is a continuous function. So it takes all the values between -1 and 1.
Thus, $ \dfrac{{2x}}{{1 + {x^2}}} \in [ - 1,1] $
Now, by applying $ {\tan ^{ - 1}} $ to both the sides. And knowing that $ {\tan ^{ - 1}} $ is an increasing function. So the inequality in intervals will not change.
$ \therefore {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ {{{\tan }^{ - 1}}( - 1),{{\tan }^{ - 1}}(1)} \right] $
By using the property, $ {\tan ^{ - 1}}( - x) = {-\tan ^{ - 1}}x $ , we can write
$ = \left[ { - {{\tan }^{ - 1}}1,{{\tan }^{ - 1}}1} \right] $
We know that, $ {\tan ^{ - 1}}1 = \dfrac{\pi }{4} $
Thus, we get the range as
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
Therefore, from the above explanation, the correct answer is, option (A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
So, the correct answer is “Option A”.
Note: To solve this question, you need to know the trigonometric formulae. Then only it would click you that you can simplify the equation in terms of $ \sin \theta $ . The key point here is to know the range of the sine function and know that the inequality does not change when you apply an increasing function to it. If you check the graph of $ {\tan ^{ - 1}}x $ . You will observe that, it is an increasing function.
Complete step-by-step answer:
The given equation is
$ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
To simplify this equation, put $ x = \tan \theta $ . Then
$ \dfrac{{2x}}{{1 + {x^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} $
We have a formula,
$ \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta $
By using this formula, we can write
$ \dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $
Now, we know that the range of $ \sin 2\theta $ is $ \left[ { - 1,1} \right] $ . Because the maximum value of $ \sin 2\theta $ is 1 and its minimum value is -1. Also it is a continuous function. So it takes all the values between -1 and 1.
Thus, $ \dfrac{{2x}}{{1 + {x^2}}} \in [ - 1,1] $
Now, by applying $ {\tan ^{ - 1}} $ to both the sides. And knowing that $ {\tan ^{ - 1}} $ is an increasing function. So the inequality in intervals will not change.
$ \therefore {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ {{{\tan }^{ - 1}}( - 1),{{\tan }^{ - 1}}(1)} \right] $
By using the property, $ {\tan ^{ - 1}}( - x) = {-\tan ^{ - 1}}x $ , we can write
$ = \left[ { - {{\tan }^{ - 1}}1,{{\tan }^{ - 1}}1} \right] $
We know that, $ {\tan ^{ - 1}}1 = \dfrac{\pi }{4} $
Thus, we get the range as
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
Therefore, from the above explanation, the correct answer is, option (A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
So, the correct answer is “Option A”.
Note: To solve this question, you need to know the trigonometric formulae. Then only it would click you that you can simplify the equation in terms of $ \sin \theta $ . The key point here is to know the range of the sine function and know that the inequality does not change when you apply an increasing function to it. If you check the graph of $ {\tan ^{ - 1}}x $ . You will observe that, it is an increasing function.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE