
Range of $ {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $ is
(A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
(B) $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) $
(C) $ \left( { - \dfrac{\pi }{2},\dfrac{\pi }{4}} \right] $
(D) $ \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] $
Answer
559.2k+ views
Hint: First simplify the given equation by substituting $ x = \tan \theta $ . After simplification, use the range of $ \sin \theta $ to find the range of the given expression. You can use the fact that $ {\tan ^{ - 1}}x $ is an increasing function. So the inequality will not change.
Complete step-by-step answer:
The given equation is
$ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
To simplify this equation, put $ x = \tan \theta $ . Then
$ \dfrac{{2x}}{{1 + {x^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} $
We have a formula,
$ \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta $
By using this formula, we can write
$ \dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $
Now, we know that the range of $ \sin 2\theta $ is $ \left[ { - 1,1} \right] $ . Because the maximum value of $ \sin 2\theta $ is 1 and its minimum value is -1. Also it is a continuous function. So it takes all the values between -1 and 1.
Thus, $ \dfrac{{2x}}{{1 + {x^2}}} \in [ - 1,1] $
Now, by applying $ {\tan ^{ - 1}} $ to both the sides. And knowing that $ {\tan ^{ - 1}} $ is an increasing function. So the inequality in intervals will not change.
$ \therefore {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ {{{\tan }^{ - 1}}( - 1),{{\tan }^{ - 1}}(1)} \right] $
By using the property, $ {\tan ^{ - 1}}( - x) = {-\tan ^{ - 1}}x $ , we can write
$ = \left[ { - {{\tan }^{ - 1}}1,{{\tan }^{ - 1}}1} \right] $
We know that, $ {\tan ^{ - 1}}1 = \dfrac{\pi }{4} $
Thus, we get the range as
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
Therefore, from the above explanation, the correct answer is, option (A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
So, the correct answer is “Option A”.
Note: To solve this question, you need to know the trigonometric formulae. Then only it would click you that you can simplify the equation in terms of $ \sin \theta $ . The key point here is to know the range of the sine function and know that the inequality does not change when you apply an increasing function to it. If you check the graph of $ {\tan ^{ - 1}}x $ . You will observe that, it is an increasing function.
Complete step-by-step answer:
The given equation is
$ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
To simplify this equation, put $ x = \tan \theta $ . Then
$ \dfrac{{2x}}{{1 + {x^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} $
We have a formula,
$ \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta $
By using this formula, we can write
$ \dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $
Now, we know that the range of $ \sin 2\theta $ is $ \left[ { - 1,1} \right] $ . Because the maximum value of $ \sin 2\theta $ is 1 and its minimum value is -1. Also it is a continuous function. So it takes all the values between -1 and 1.
Thus, $ \dfrac{{2x}}{{1 + {x^2}}} \in [ - 1,1] $
Now, by applying $ {\tan ^{ - 1}} $ to both the sides. And knowing that $ {\tan ^{ - 1}} $ is an increasing function. So the inequality in intervals will not change.
$ \therefore {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ {{{\tan }^{ - 1}}( - 1),{{\tan }^{ - 1}}(1)} \right] $
By using the property, $ {\tan ^{ - 1}}( - x) = {-\tan ^{ - 1}}x $ , we can write
$ = \left[ { - {{\tan }^{ - 1}}1,{{\tan }^{ - 1}}1} \right] $
We know that, $ {\tan ^{ - 1}}1 = \dfrac{\pi }{4} $
Thus, we get the range as
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
Therefore, from the above explanation, the correct answer is, option (A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
So, the correct answer is “Option A”.
Note: To solve this question, you need to know the trigonometric formulae. Then only it would click you that you can simplify the equation in terms of $ \sin \theta $ . The key point here is to know the range of the sine function and know that the inequality does not change when you apply an increasing function to it. If you check the graph of $ {\tan ^{ - 1}}x $ . You will observe that, it is an increasing function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

