Answer
Verified
431.4k+ views
Hint: In this question, we are asked to calculate the angle at which the man should hold the umbrella to protect himself from rain. We know that velocity is a vector quantity that has magnitude and direction. So, we are basically asked to find the direction of the velocity of rain. We will be using the laws of vector addition to solve this question.
Complete answer:
The velocity of man and velocity of rain are given as shown in the figure below. The given direction of rain is for a man running on the road. Now if the man is made to stand still then the direction of the velocity of rain with respect to man will be given as shown in the figure.
We know that,
\[{{V}_{Rm}}={{V}_{R}}-{{V}_{m}}\]
We also know that
\[{{V}_{Rm}}={{V}_{R}}+(-{{V}_{m}})\]
Therefore, the direction of velocity of rain with respect to man is as shown in the above figure.
Now, it is given that magnitude of velocity of rain with respect to man is equal to 1.5 times the velocity of man
Therefore,
\[\left| {{V}_{Rm}} \right|=1.5\left| {{V}_{m}} \right|\] ………….. (1)
Now, from the above figure, we can say that
\[\sin \theta =\dfrac{\left| {{V}_{m}} \right|}{\left| {{V}_{Rm}} \right|}\]
After substituting the value from (1)
We get,
\[\sin \theta =\dfrac{\left| {{V}_{m}} \right|}{1.5\left| {{V}_{m}} \right|}\]
Therefore,
\[\sin \theta =\dfrac{1}{1.5}=\dfrac{2}{3}\]
Now, from Pythagoras theorem, we know the adjacent side,
\[{{x}^{2}}=\sqrt{{{3}^{2}}-{{2}^{2}}}\]
Therefore,
\[x=\sqrt{5}\]
Therefore, from trigonometric ratios
We know,
\[\tan \theta =\dfrac{2}{\sqrt{5}}\]
So, the correct answer is “Option A”.
Note:
Problems of this kind are called rain-man problems. These are usually asked in entrance level exams. The easy trick to solve these questions is by using the vector addition and subtraction laws and basic trigonometry. Pythagoras theorem helps us to calculate the third side of a right-angled triangle if the other two sides are known. The modified Pythagoras theorem can help us find out the other sides if one angle and one side is known.
Complete answer:
The velocity of man and velocity of rain are given as shown in the figure below. The given direction of rain is for a man running on the road. Now if the man is made to stand still then the direction of the velocity of rain with respect to man will be given as shown in the figure.
We know that,
\[{{V}_{Rm}}={{V}_{R}}-{{V}_{m}}\]
We also know that
\[{{V}_{Rm}}={{V}_{R}}+(-{{V}_{m}})\]
Therefore, the direction of velocity of rain with respect to man is as shown in the above figure.
Now, it is given that magnitude of velocity of rain with respect to man is equal to 1.5 times the velocity of man
Therefore,
\[\left| {{V}_{Rm}} \right|=1.5\left| {{V}_{m}} \right|\] ………….. (1)
Now, from the above figure, we can say that
\[\sin \theta =\dfrac{\left| {{V}_{m}} \right|}{\left| {{V}_{Rm}} \right|}\]
After substituting the value from (1)
We get,
\[\sin \theta =\dfrac{\left| {{V}_{m}} \right|}{1.5\left| {{V}_{m}} \right|}\]
Therefore,
\[\sin \theta =\dfrac{1}{1.5}=\dfrac{2}{3}\]
Now, from Pythagoras theorem, we know the adjacent side,
\[{{x}^{2}}=\sqrt{{{3}^{2}}-{{2}^{2}}}\]
Therefore,
\[x=\sqrt{5}\]
Therefore, from trigonometric ratios
We know,
\[\tan \theta =\dfrac{2}{\sqrt{5}}\]
So, the correct answer is “Option A”.
Note:
Problems of this kind are called rain-man problems. These are usually asked in entrance level exams. The easy trick to solve these questions is by using the vector addition and subtraction laws and basic trigonometry. Pythagoras theorem helps us to calculate the third side of a right-angled triangle if the other two sides are known. The modified Pythagoras theorem can help us find out the other sides if one angle and one side is known.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE