
How many radians does it take to go $720$ degrees ?
Answer
540.3k+ views
Hint: In the given question, we are required to convert the angle given in degree measure into radian measure. Radian is the SI unit for measuring angles. In order to convert the degree measure into radian measure, multiply the given degree measure with $\left[ {\dfrac{\pi }{{180}}} \right]$ to get the desired result.
Complete step by step answer:
The measure of an angle is controlled by the measure of pivot from the underlying side to the terminal side. In radians, one complete counter clockwise upheaval is $2\pi $and in degrees, one complete counterclockwise upset is $360$degrees. Along these lines, degree measure and radian measure are connected by the conditions:
$2\pi $radians $ = {360^ \circ }$
$\Rightarrow\pi $radians $ = {180^ \circ }$
From the above mentioned equations or results, we get the condition $1$ radian $ = \dfrac{{180}}{\pi }$degrees. This leads us to the standard to change over degree measure to radian measure. To change over from degree to radian, we multiply the degree measure by $\dfrac{\pi }{{180}}$.So, in our question we are given ${330^ \circ }$.Multiplying both sides with ${330^ \circ }$.
${720^ \circ } = \dfrac{{720\pi }}{{180}}$radians
Cancelling the common factors in numerator and denominator, we get,
$ \therefore {720^ \circ } = 4\pi $radians
Therefore, ${720^ \circ }$ in radians equal to $4\pi $ radians.
Note:The radian, indicated by the symbol rad is the SI unit for measuring angles, and is the standard unit of angle measure utilized in numerous zones of arithmetic. The length of an arc of a unit circle is mathematically equivalent to the measurement in radians of the angle that it subtends; one radian is $\dfrac{{180}}{\pi }$ degrees. Don’t forget to Cross-check your answer.
Complete step by step answer:
The measure of an angle is controlled by the measure of pivot from the underlying side to the terminal side. In radians, one complete counter clockwise upheaval is $2\pi $and in degrees, one complete counterclockwise upset is $360$degrees. Along these lines, degree measure and radian measure are connected by the conditions:
$2\pi $radians $ = {360^ \circ }$
$\Rightarrow\pi $radians $ = {180^ \circ }$
From the above mentioned equations or results, we get the condition $1$ radian $ = \dfrac{{180}}{\pi }$degrees. This leads us to the standard to change over degree measure to radian measure. To change over from degree to radian, we multiply the degree measure by $\dfrac{\pi }{{180}}$.So, in our question we are given ${330^ \circ }$.Multiplying both sides with ${330^ \circ }$.
${720^ \circ } = \dfrac{{720\pi }}{{180}}$radians
Cancelling the common factors in numerator and denominator, we get,
$ \therefore {720^ \circ } = 4\pi $radians
Therefore, ${720^ \circ }$ in radians equal to $4\pi $ radians.
Note:The radian, indicated by the symbol rad is the SI unit for measuring angles, and is the standard unit of angle measure utilized in numerous zones of arithmetic. The length of an arc of a unit circle is mathematically equivalent to the measurement in radians of the angle that it subtends; one radian is $\dfrac{{180}}{\pi }$ degrees. Don’t forget to Cross-check your answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

