
What is the Q factor of an LR circuit?
(A) $ \dfrac{1}{R} $
(B) $ \dfrac{{{X_L}}}{R} $
(C) 1
(D) 0
Answer
550.8k+ views
Hint: The Q factor of the LR circuit is inversely proportional to resistance and is directly proportional to inductive reactance.
Complete step by step solution
The quality factor or Q factor of an LR circuit at the operating frequency $ \omega $ is defined as the ratio of reactance $ \nu F $ of the coil to the resistance.
We can use the above definition to write the formula of the Q factor of the LR circuit.
$ Q = \dfrac{{\omega L}}{R} = \dfrac{{{X_L}}}{R} $
Where $ {X_L} $ is the inductive reactance of the coil and $ R $ is the resistance.
This implies that option B is correct.
Additional information
Inductive reactance, which is also known by the symbol, $ {X_L} $ , is the property in an AC circuit that opposes the change in the current.
We can write an equation for inductive reactance which would be as follows.
$ {X_L} = 2\pi fL $
Where f is the frequency and L is the inductance of the coil and we can further write $ 2\pi f $ as $ \omega $
Then, the equation can be written in a simpler form as
$ {X_L} = \omega L $
Where $ \omega $ is the angular velocity.
The Q factor is a unitless and dimensionless quantity.
Note
The more resistance there will be, the less will be the value of the Q factor. We can also say that as inductive reactance is frequency-dependent, at DC, an inductor will have zero reactance, and therefore the Q factor will have to be zero, and at high frequencies, an inductor has an infinite reactance
Complete step by step solution
The quality factor or Q factor of an LR circuit at the operating frequency $ \omega $ is defined as the ratio of reactance $ \nu F $ of the coil to the resistance.
We can use the above definition to write the formula of the Q factor of the LR circuit.
$ Q = \dfrac{{\omega L}}{R} = \dfrac{{{X_L}}}{R} $
Where $ {X_L} $ is the inductive reactance of the coil and $ R $ is the resistance.
This implies that option B is correct.
Additional information
Inductive reactance, which is also known by the symbol, $ {X_L} $ , is the property in an AC circuit that opposes the change in the current.
We can write an equation for inductive reactance which would be as follows.
$ {X_L} = 2\pi fL $
Where f is the frequency and L is the inductance of the coil and we can further write $ 2\pi f $ as $ \omega $
Then, the equation can be written in a simpler form as
$ {X_L} = \omega L $
Where $ \omega $ is the angular velocity.
The Q factor is a unitless and dimensionless quantity.
Note
The more resistance there will be, the less will be the value of the Q factor. We can also say that as inductive reactance is frequency-dependent, at DC, an inductor will have zero reactance, and therefore the Q factor will have to be zero, and at high frequencies, an inductor has an infinite reactance
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

