
Why is $p\wedge q\Rightarrow r$ is true, when p is true and q is false?
Answer
517.2k+ views
Hint: We know that if we have two predictions p and q, then the implication $p\Rightarrow q$ is true when either p is false, or q is true, or both. Also, we must know that a conjunction is true only when both the predictions are true. Using these two concepts, we can show that $p\wedge q\Rightarrow r$ is true when p is true and q is false.
Complete step by step answer:
We know that if we have two predictions p and q, then $p\Rightarrow q$ is true when either p is false, or q is true, or both.
We also know very well that the conjunction $p\wedge q$ is true only if both p and q are true, else the conjunction is false. We can also see this from the truth table shown below,
In this question, we are given that the predicted p is true and the predicted q is false.
From the truth table, we can see that when p is true and q is false, then the conjunction $p\wedge q$ is false.
And from the above discussion on implication, we can say that the implication $p\wedge q\Rightarrow r$ is true when either $p\wedge q$ is false, or r is true, or both.
We have no information about r. Now, we have proved above that the conjunction $p\wedge q$ is false.
So, we can easily say that the implication $p\wedge q\Rightarrow r$ is true.
Hence, when p is true and q is false, the implication $p\wedge q\Rightarrow r$ is true.
Note: We must remember that an implication is also called a conditional. We should also know that the conjunction, represented by the symbol $\wedge $, is also called AND logic. We can also solve this problem using negation and disjunction.
Complete step by step answer:
We know that if we have two predictions p and q, then $p\Rightarrow q$ is true when either p is false, or q is true, or both.
We also know very well that the conjunction $p\wedge q$ is true only if both p and q are true, else the conjunction is false. We can also see this from the truth table shown below,
| p | q | $p\wedge q$ |
| True | True | True |
| True | False | False |
| False | True | False |
| False | False | False |
In this question, we are given that the predicted p is true and the predicted q is false.
From the truth table, we can see that when p is true and q is false, then the conjunction $p\wedge q$ is false.
And from the above discussion on implication, we can say that the implication $p\wedge q\Rightarrow r$ is true when either $p\wedge q$ is false, or r is true, or both.
We have no information about r. Now, we have proved above that the conjunction $p\wedge q$ is false.
So, we can easily say that the implication $p\wedge q\Rightarrow r$ is true.
Hence, when p is true and q is false, the implication $p\wedge q\Rightarrow r$ is true.
Note: We must remember that an implication is also called a conditional. We should also know that the conjunction, represented by the symbol $\wedge $, is also called AND logic. We can also solve this problem using negation and disjunction.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

