How do you put $2x - 3y = 6$ in slope-intercept form?
Answer
Verified
440.7k+ views
Hint: The above question is based on the concept of slope-intercept form. The main approach towards solving the equation is by applying the formula of the equation of straight line. So, using this formula we need to write the equation in that form by shifting the terms on the other side.
Complete step-by-step answer:
One of the forms of the equation of a straight line is also called slope intercept form. We know the equation of straight line in slope intercept form is \[y = mx + c\]
Where m denotes the slope of the line and c is the y-intercept of the line.
The standard equation of first degree is \[Ax + By + C = 0\] can be written in the slope intercept form as :
\[y = \left( { - \dfrac{A}{B}} \right)x - \left( {\dfrac{C}{B}} \right)\]
where \[m = \left( { - \dfrac{A}{B}} \right)\] and \[c = \left( { - \dfrac{C}{B}} \right)\]
and also \[B \ne 0\] .
So now the given equation is $2x - 3y = 6$
So first we need to shift the terms which are on the left-hand side towards the right hand side.
Therefore, we get
\[
\Rightarrow 2x - 3y = 6 \\
\Rightarrow - 3y = - 2x + 6 \\
\]
Then by multiplying it with negative sign throughout the equation we get,
\[3y = 2x - 6\]
Then we need to isolate the term y so we shift the number 3 on the right hand side to the denominator.
\[y = \dfrac{2}{3}x - 2\]
Hence the standard equation of first degree is written in the above slope intercept form
So, the correct answer is “\[y = \dfrac{2}{3}x - 2\] ”.
Note: An important thing to note is that here the c=-2 i.e., the y-intercept of the equation is -2.In the graph we plot the equation we get to know that the equation of line will cut y-axis at -2 and the slope which is \[\dfrac{2}{3}\] which gives the direction of the line.
Complete step-by-step answer:
One of the forms of the equation of a straight line is also called slope intercept form. We know the equation of straight line in slope intercept form is \[y = mx + c\]
Where m denotes the slope of the line and c is the y-intercept of the line.
The standard equation of first degree is \[Ax + By + C = 0\] can be written in the slope intercept form as :
\[y = \left( { - \dfrac{A}{B}} \right)x - \left( {\dfrac{C}{B}} \right)\]
where \[m = \left( { - \dfrac{A}{B}} \right)\] and \[c = \left( { - \dfrac{C}{B}} \right)\]
and also \[B \ne 0\] .
So now the given equation is $2x - 3y = 6$
So first we need to shift the terms which are on the left-hand side towards the right hand side.
Therefore, we get
\[
\Rightarrow 2x - 3y = 6 \\
\Rightarrow - 3y = - 2x + 6 \\
\]
Then by multiplying it with negative sign throughout the equation we get,
\[3y = 2x - 6\]
Then we need to isolate the term y so we shift the number 3 on the right hand side to the denominator.
\[y = \dfrac{2}{3}x - 2\]
Hence the standard equation of first degree is written in the above slope intercept form
So, the correct answer is “\[y = \dfrac{2}{3}x - 2\] ”.
Note: An important thing to note is that here the c=-2 i.e., the y-intercept of the equation is -2.In the graph we plot the equation we get to know that the equation of line will cut y-axis at -2 and the slope which is \[\dfrac{2}{3}\] which gives the direction of the line.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE