Answer
Verified
448.8k+ views
Hint: Here we will substitute the value of x and y on the left hand side of the equation and prove it equal to the right hand side using various trigonometric identities:-
\[
1 + {\tan ^2}\theta = {\sec ^2}\theta \\
\Rightarrow {\sec ^2}\theta - {\tan ^2}\theta = 1 \\
\]
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
Complete step-by-step answer:
The given equation is:-
\[{{\text{x}}^2} - {y^2} = {a^2} - {b^2}\]
Let us consider the left hand side of the given equation:-
\[LHS = {{\text{x}}^2} - {y^2}\]
Now it is given that:-
\[x = a\sec \theta + b\tan \theta \] and \[y = a\tan \theta + b\sec \theta \]
Hence putting in the respective values of x and y in LHS we get:-
\[LHS = {\left( {a\sec \theta + b\tan \theta } \right)^2} - {\left( {a\tan \theta + b\sec \theta } \right)^2}\]
Now applying the following identity on both he terms:-
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
We get:-
\[LHS = {\left( {a\sec \theta } \right)^2} + {\left( {b\tan \theta } \right)^2} + 2\left( {a\sec \theta } \right)\left( {b\tan \theta } \right) - \left[ {{{\left( {a\tan \theta } \right)}^2} + {{\left( {b\sec \theta } \right)}^2} + 2\left( {b\sec \theta } \right)\left( {a\tan \theta } \right)} \right]\]
Now simplifying it further we get:-
\[
LHS = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta + 2ab\sec \theta \tan \theta - \left[ {{a^2}{{\tan }^2}\theta + {b^2}{{\sec }^2}\theta + 2ab\sec \theta \tan \theta } \right] \\
\Rightarrow LHS = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta + 2ab\sec \theta \tan \theta - {a^2}{\tan ^2}\theta - {b^2}{\sec ^2}\theta - 2ab\sec \theta \tan \theta \\
\]
Now cancelling the required terms we get:-
\[LHS = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta - {a^2}{\tan ^2}\theta - {b^2}{\sec ^2}\theta \]
Now taking \[{a^2}\] and \[{b^2}\] common we get:-
\[LHS = {a^2}\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) - {b^2}\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\]
Again taking common we get:-
\[LHS = \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{a^2} - {b^2}} \right)\]
Now applying the following identity:-
\[
1 + {\tan ^2}\theta = {\sec ^2}\theta \\
\Rightarrow {\sec ^2}\theta - {\tan ^2}\theta = 1 \\
\]
We get:-
\[
\Rightarrow LHS = \left( {{a^2} - {b^2}} \right) \\
{\text{ }} = RHS \\
\]
Therefore,
\[LHS = RHS\]
Hence proved.
Note: The student may make mistakes while applying the identity, so the identity should be first simplified in the required form and then apply it.
The student can also use the following identity on the initial stage:
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Hence,
\[{{\text{x}}^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\]
Then put in the values of x and y and proceed further to get the desired answer.
\[
1 + {\tan ^2}\theta = {\sec ^2}\theta \\
\Rightarrow {\sec ^2}\theta - {\tan ^2}\theta = 1 \\
\]
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
Complete step-by-step answer:
The given equation is:-
\[{{\text{x}}^2} - {y^2} = {a^2} - {b^2}\]
Let us consider the left hand side of the given equation:-
\[LHS = {{\text{x}}^2} - {y^2}\]
Now it is given that:-
\[x = a\sec \theta + b\tan \theta \] and \[y = a\tan \theta + b\sec \theta \]
Hence putting in the respective values of x and y in LHS we get:-
\[LHS = {\left( {a\sec \theta + b\tan \theta } \right)^2} - {\left( {a\tan \theta + b\sec \theta } \right)^2}\]
Now applying the following identity on both he terms:-
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
We get:-
\[LHS = {\left( {a\sec \theta } \right)^2} + {\left( {b\tan \theta } \right)^2} + 2\left( {a\sec \theta } \right)\left( {b\tan \theta } \right) - \left[ {{{\left( {a\tan \theta } \right)}^2} + {{\left( {b\sec \theta } \right)}^2} + 2\left( {b\sec \theta } \right)\left( {a\tan \theta } \right)} \right]\]
Now simplifying it further we get:-
\[
LHS = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta + 2ab\sec \theta \tan \theta - \left[ {{a^2}{{\tan }^2}\theta + {b^2}{{\sec }^2}\theta + 2ab\sec \theta \tan \theta } \right] \\
\Rightarrow LHS = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta + 2ab\sec \theta \tan \theta - {a^2}{\tan ^2}\theta - {b^2}{\sec ^2}\theta - 2ab\sec \theta \tan \theta \\
\]
Now cancelling the required terms we get:-
\[LHS = {a^2}{\sec ^2}\theta + {b^2}{\tan ^2}\theta - {a^2}{\tan ^2}\theta - {b^2}{\sec ^2}\theta \]
Now taking \[{a^2}\] and \[{b^2}\] common we get:-
\[LHS = {a^2}\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right) - {b^2}\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\]
Again taking common we get:-
\[LHS = \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{a^2} - {b^2}} \right)\]
Now applying the following identity:-
\[
1 + {\tan ^2}\theta = {\sec ^2}\theta \\
\Rightarrow {\sec ^2}\theta - {\tan ^2}\theta = 1 \\
\]
We get:-
\[
\Rightarrow LHS = \left( {{a^2} - {b^2}} \right) \\
{\text{ }} = RHS \\
\]
Therefore,
\[LHS = RHS\]
Hence proved.
Note: The student may make mistakes while applying the identity, so the identity should be first simplified in the required form and then apply it.
The student can also use the following identity on the initial stage:
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Hence,
\[{{\text{x}}^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)\]
Then put in the values of x and y and proceed further to get the desired answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell