Answer
Verified
414k+ views
Hint:
Here, we will use the definition of the Eigenvalue for a matrix. Then we will use the given matrix and multiply an Eigenvector. Then we will substitute the Eigen value to simplify the equation. We will use the condition of linearity and Identity to prove the statement.
Formula Used:
We will use the following Properties:
1) Linearity Property: \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\]
2) Identity Property: \[AI = A = IA\]
Complete step by step solution:
We are given that \[\lambda \] is an Eigenvalue of the\[n \times n\]matrix\[A\].
We know that by definition, if \[A\nu = \lambda \nu \] for \[\nu \ne 0\], we say that \[\lambda \] is the Eigenvalue for \[\nu \] and \[\nu \] is an Eigenvector for \[\lambda \].
\[A\nu = \lambda \nu \] ……………………………………………………\[\left( 1 \right)\]
Now, we will prove that \[\lambda + \mu \] is an Eigenvalue of the given matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Now, let us consider the given matrix
\[M = A + \mu I\]
By multiplying the Eigenvector \[\nu \] on both the sides of the given matrix, we get
\[ \Rightarrow M\nu = \left( {A + \mu I} \right)\nu \]
Using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = A\nu + \mu I\nu \]
Now, it is given that \[I\] is the \[n \times n\] unit matrix, so by using the identity property \[AI = A = IA\], we get
\[ \Rightarrow M\nu = A\nu + \mu \nu \]
Now, by using the equation \[\left( 1 \right)\], we get
\[ \Rightarrow M\nu = \lambda \nu + \mu \nu \]
Again by using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = \left( {\lambda + \mu } \right)\nu \]
So, \[\lambda + \mu \] is an Eigenvalue of the matrix \[M\] and \[\nu \] is the corresponding Eigenvector of the matrix \[M\] for the Eigenvalue \[\lambda + \mu \] .
Theorem: Let \[A\] be an \[n \times n\] matrix and \[\lambda \] an Eigenvalue of \[A\]. Then \[\lambda + \mu \] is an Eigenvalue of the matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Hence proved.
Note:
We know that an Eigenvector of a matrix is a non-zero vector in \[{{\bf{R}}^n}\] such that \[A\nu = \lambda \nu \] for some scalar\[\lambda \]. An Eigenvalue of a matrix is a scalar \[\lambda \] such that \[A\nu = \lambda \nu \] has a non-trivial solution. We should note that an Eigenvector and an Eigenvalue are found only for square matrices. Also, an Eigenvector is always non-zero but Eigenvalues may be equal to zero. A square matrix is defined as a matrix where the number of rows is equal to the number of columns.
Here, we will use the definition of the Eigenvalue for a matrix. Then we will use the given matrix and multiply an Eigenvector. Then we will substitute the Eigen value to simplify the equation. We will use the condition of linearity and Identity to prove the statement.
Formula Used:
We will use the following Properties:
1) Linearity Property: \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\]
2) Identity Property: \[AI = A = IA\]
Complete step by step solution:
We are given that \[\lambda \] is an Eigenvalue of the\[n \times n\]matrix\[A\].
We know that by definition, if \[A\nu = \lambda \nu \] for \[\nu \ne 0\], we say that \[\lambda \] is the Eigenvalue for \[\nu \] and \[\nu \] is an Eigenvector for \[\lambda \].
\[A\nu = \lambda \nu \] ……………………………………………………\[\left( 1 \right)\]
Now, we will prove that \[\lambda + \mu \] is an Eigenvalue of the given matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Now, let us consider the given matrix
\[M = A + \mu I\]
By multiplying the Eigenvector \[\nu \] on both the sides of the given matrix, we get
\[ \Rightarrow M\nu = \left( {A + \mu I} \right)\nu \]
Using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = A\nu + \mu I\nu \]
Now, it is given that \[I\] is the \[n \times n\] unit matrix, so by using the identity property \[AI = A = IA\], we get
\[ \Rightarrow M\nu = A\nu + \mu \nu \]
Now, by using the equation \[\left( 1 \right)\], we get
\[ \Rightarrow M\nu = \lambda \nu + \mu \nu \]
Again by using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = \left( {\lambda + \mu } \right)\nu \]
So, \[\lambda + \mu \] is an Eigenvalue of the matrix \[M\] and \[\nu \] is the corresponding Eigenvector of the matrix \[M\] for the Eigenvalue \[\lambda + \mu \] .
Theorem: Let \[A\] be an \[n \times n\] matrix and \[\lambda \] an Eigenvalue of \[A\]. Then \[\lambda + \mu \] is an Eigenvalue of the matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Hence proved.
Note:
We know that an Eigenvector of a matrix is a non-zero vector in \[{{\bf{R}}^n}\] such that \[A\nu = \lambda \nu \] for some scalar\[\lambda \]. An Eigenvalue of a matrix is a scalar \[\lambda \] such that \[A\nu = \lambda \nu \] has a non-trivial solution. We should note that an Eigenvector and an Eigenvalue are found only for square matrices. Also, an Eigenvector is always non-zero but Eigenvalues may be equal to zero. A square matrix is defined as a matrix where the number of rows is equal to the number of columns.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE