# Prove the trigonometric identity: $\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot {{56}^{\circ }}$

Last updated date: 30th Mar 2023

•

Total views: 306k

•

Views today: 2.82k

Answer

Verified

306k+ views

Hint: Convert cosine functions involved in the expression to sine functions using the identity $\cos \left( 90-\theta \right)=\sin \theta .$ Now, use identities of $\sin C-\sin D$ and $\sin C+\sin D$ to get the Right hand side.

Complete step by step solution:

We have to prove,

$\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)$

As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.

\[LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)\]

Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,

$\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)$

So, we can write $\cos {{11}^{\circ }}$ as $\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)$ and hence, using the equation (iii) we get,

$\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)$

Now replace $\cos {{11}^{\circ }}$ from the equation (ii) by using equation (iv). Hence we get,

$LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)$

Now, we can use trigonometric identity of $\sin A-\sin B$ and $\sin A+\sin B$ to evaluate the value of expression in equation (v). Hence, identities of $\sin A-\sin B$ and $\sin A+\sin B$ can be given as,

$\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}$

$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$

Hence, we can simplify equation (V) by using the above identities. Hence, we get

$LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}$

$LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}$

$LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}$

Now, we can put values of $\sin {{45}^{\circ }}$ and $\cos {{45}^{\circ }}$ as $\dfrac{1}{\sqrt{2}}.$ Hence we get

$LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}$

Now, we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta .$ Hence we get LHS as

$LHS=\tan {{34}^{\circ }}................\left( vi \right)$

Now, we can convert the $'\tan '$expression of LHS to cosine by using the identity

$\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)$

Hence, we can write the LHS from equation (vii), we get

$LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)$

$LHS=\cot {{56}^{\circ }}..............\left( viii \right)$

Hence, from the equation (i) and (viii) we get,

$LHS=RHS=\cot {{56}^{\circ }}$

So, the given expression is proved.

Note: One can convert $\sin {{11}^{\circ }}$ to cosine function as well by using the relation $\sin \left( 90-\theta \right)=\cos \theta .$ And hence apply formula of $\cos A-\cos B$ and $\cos A+\cos B$ to get the answer.

We can divide the whole expression by $\cos {{11}^{\circ }}$ i.e. numerator and denominator both. Hence we get

$\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.$

Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of $\sin A-\sin B$ and $\sin A+\sin B$ in the solution.

Complete step by step solution:

We have to prove,

$\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)$

As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.

\[LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)\]

Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,

$\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)$

So, we can write $\cos {{11}^{\circ }}$ as $\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)$ and hence, using the equation (iii) we get,

$\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)$

Now replace $\cos {{11}^{\circ }}$ from the equation (ii) by using equation (iv). Hence we get,

$LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)$

Now, we can use trigonometric identity of $\sin A-\sin B$ and $\sin A+\sin B$ to evaluate the value of expression in equation (v). Hence, identities of $\sin A-\sin B$ and $\sin A+\sin B$ can be given as,

$\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}$

$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$

Hence, we can simplify equation (V) by using the above identities. Hence, we get

$LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}$

$LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}$

$LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}$

Now, we can put values of $\sin {{45}^{\circ }}$ and $\cos {{45}^{\circ }}$ as $\dfrac{1}{\sqrt{2}}.$ Hence we get

$LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}$

Now, we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta .$ Hence we get LHS as

$LHS=\tan {{34}^{\circ }}................\left( vi \right)$

Now, we can convert the $'\tan '$expression of LHS to cosine by using the identity

$\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)$

Hence, we can write the LHS from equation (vii), we get

$LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)$

$LHS=\cot {{56}^{\circ }}..............\left( viii \right)$

Hence, from the equation (i) and (viii) we get,

$LHS=RHS=\cot {{56}^{\circ }}$

So, the given expression is proved.

Note: One can convert $\sin {{11}^{\circ }}$ to cosine function as well by using the relation $\sin \left( 90-\theta \right)=\cos \theta .$ And hence apply formula of $\cos A-\cos B$ and $\cos A+\cos B$ to get the answer.

We can divide the whole expression by $\cos {{11}^{\circ }}$ i.e. numerator and denominator both. Hence we get

$\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.$

Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of $\sin A-\sin B$ and $\sin A+\sin B$ in the solution.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE