Answer
Verified
492k+ views
Hint: Convert cosine functions involved in the expression to sine functions using the identity $\cos \left( 90-\theta \right)=\sin \theta .$ Now, use identities of $\sin C-\sin D$ and $\sin C+\sin D$ to get the Right hand side.
Complete step by step solution:
We have to prove,
$\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)$
As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.
\[LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)\]
Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,
$\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)$
So, we can write $\cos {{11}^{\circ }}$ as $\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)$ and hence, using the equation (iii) we get,
$\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)$
Now replace $\cos {{11}^{\circ }}$ from the equation (ii) by using equation (iv). Hence we get,
$LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)$
Now, we can use trigonometric identity of $\sin A-\sin B$ and $\sin A+\sin B$ to evaluate the value of expression in equation (v). Hence, identities of $\sin A-\sin B$ and $\sin A+\sin B$ can be given as,
$\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}$
$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Hence, we can simplify equation (V) by using the above identities. Hence, we get
$LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}$
$LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}$
$LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}$
Now, we can put values of $\sin {{45}^{\circ }}$ and $\cos {{45}^{\circ }}$ as $\dfrac{1}{\sqrt{2}}.$ Hence we get
$LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}$
Now, we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta .$ Hence we get LHS as
$LHS=\tan {{34}^{\circ }}................\left( vi \right)$
Now, we can convert the $'\tan '$expression of LHS to cosine by using the identity
$\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)$
Hence, we can write the LHS from equation (vii), we get
$LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)$
$LHS=\cot {{56}^{\circ }}..............\left( viii \right)$
Hence, from the equation (i) and (viii) we get,
$LHS=RHS=\cot {{56}^{\circ }}$
So, the given expression is proved.
Note: One can convert $\sin {{11}^{\circ }}$ to cosine function as well by using the relation $\sin \left( 90-\theta \right)=\cos \theta .$ And hence apply formula of $\cos A-\cos B$ and $\cos A+\cos B$ to get the answer.
We can divide the whole expression by $\cos {{11}^{\circ }}$ i.e. numerator and denominator both. Hence we get
$\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.$
Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of $\sin A-\sin B$ and $\sin A+\sin B$ in the solution.
Complete step by step solution:
We have to prove,
$\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)$
As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.
\[LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)\]
Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,
$\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)$
So, we can write $\cos {{11}^{\circ }}$ as $\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)$ and hence, using the equation (iii) we get,
$\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)$
Now replace $\cos {{11}^{\circ }}$ from the equation (ii) by using equation (iv). Hence we get,
$LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)$
Now, we can use trigonometric identity of $\sin A-\sin B$ and $\sin A+\sin B$ to evaluate the value of expression in equation (v). Hence, identities of $\sin A-\sin B$ and $\sin A+\sin B$ can be given as,
$\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}$
$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Hence, we can simplify equation (V) by using the above identities. Hence, we get
$LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}$
$LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}$
$LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}$
Now, we can put values of $\sin {{45}^{\circ }}$ and $\cos {{45}^{\circ }}$ as $\dfrac{1}{\sqrt{2}}.$ Hence we get
$LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}$
Now, we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta .$ Hence we get LHS as
$LHS=\tan {{34}^{\circ }}................\left( vi \right)$
Now, we can convert the $'\tan '$expression of LHS to cosine by using the identity
$\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)$
Hence, we can write the LHS from equation (vii), we get
$LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)$
$LHS=\cot {{56}^{\circ }}..............\left( viii \right)$
Hence, from the equation (i) and (viii) we get,
$LHS=RHS=\cot {{56}^{\circ }}$
So, the given expression is proved.
Note: One can convert $\sin {{11}^{\circ }}$ to cosine function as well by using the relation $\sin \left( 90-\theta \right)=\cos \theta .$ And hence apply formula of $\cos A-\cos B$ and $\cos A+\cos B$ to get the answer.
We can divide the whole expression by $\cos {{11}^{\circ }}$ i.e. numerator and denominator both. Hence we get
$\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.$
Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of $\sin A-\sin B$ and $\sin A+\sin B$ in the solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE