
How will you prove the trigonometric formula Cos(A+B) = Cos A Cos B – Sin A Sin B using the formula of the cross product of two vectors1?
Answer
540.3k+ views
Hint: The cross product of two vectors is also a vector quantity The cross product a$ \times $b is defined as a vector c that is perpendicular to both a and b, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.
$A \times B = \left | A \right |\left | B \right |\operatorname{Sin} \theta n$
Where
$\left | A \right |$ is the length of vector A
$\left | B \right |$ is the length of vector B
Is the angle between A & B
N is the unit vector perpendicular to the plane containing A and B
Complete step by step solution:
Refer to the following image
Now, consider two unit vectors in the X-Y plane as follows :
$\hat a$→ unit vector inclined with the positive direction of X-axis at angles A
\[\hat b\]→ unit vector inclined with the positive direction of X-axis at angles 90-B, where $90 - B > A$
The angle between these two vectors becomes
$\theta = 90 - A - B = 90 - \left( {A + B} \right)$
Now writing in vector form we get
$\hat a = \operatorname{Cos} A\hat i + \operatorname{Sin} A\hat j$
$\hat b = \operatorname{Cos} \left( {90 - B} \right)\hat i + \operatorname{Sin} \left( {90 - B} \right)\hat j$
$\hat b = \operatorname{Sin} B\hat i + \operatorname{Cos} B\hat j$
Now
Taking the cross product of the above two vectors i.e.,
$\hat a \times \hat b = \left( {\operatorname{Cos} A\hat i + \operatorname{Sin} A\hat j} \right) \times \left( {\operatorname{Sin} B\hat i + \operatorname{Cos} B\hat j} \right)$
$\because A \times B = \left | A \right |\left | B \right |\operatorname{Sin} \theta \hat k$
$\therefore \left | {\hat a} \right | \left | {\hat b} \right |\operatorname{Sin} \theta \hat k = \operatorname{Cos} A\operatorname{Cos} B\left( {\hat i \times \hat j} \right) + \operatorname{Sin} A\operatorname{Sin} B(\hat j \times \hat i)$ Applying Properties of unit vectors $\hat i,\hat j,\hat k$
$\hat i \times \hat j = \hat k$ $\hat j \times \hat i = - \hat k$
$\hat i \times \hat i = null$ $\hat j \times \hat j = null$ and
$\left | A \right |$=1 and $\left | B \right |$=1 as both are unit vectors
Also substituting the value of the angle between the vectors, $\theta = 90 - \left( {A + B} \right)$
Finally, we get,
\[\operatorname{Sin} \left( {90 - \left( {A + B} \right)} \right)\hat k = \operatorname{Cos} A\operatorname{Cos} B\hat k + \operatorname{Sin} A\operatorname{Sin} B\hat k\]
$\therefore \operatorname{Cos} \left( {A + B} \right) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B$
Note:
The Cross product is a vector quantity
If two vectors are parallel to each other then their cross product will be zero since $\operatorname{Sin} 0^\circ = 0$
The dot product is a scalar quantity
If two vectors are perpendicular their dot product will be zero since $\operatorname{Cos} 90^\circ = 0$
$A \times B = \left | A \right |\left | B \right |\operatorname{Sin} \theta n$
Where
$\left | A \right |$ is the length of vector A
$\left | B \right |$ is the length of vector B
Is the angle between A & B
N is the unit vector perpendicular to the plane containing A and B
Complete step by step solution:
Refer to the following image
Now, consider two unit vectors in the X-Y plane as follows :
$\hat a$→ unit vector inclined with the positive direction of X-axis at angles A
\[\hat b\]→ unit vector inclined with the positive direction of X-axis at angles 90-B, where $90 - B > A$
The angle between these two vectors becomes
$\theta = 90 - A - B = 90 - \left( {A + B} \right)$
Now writing in vector form we get
$\hat a = \operatorname{Cos} A\hat i + \operatorname{Sin} A\hat j$
$\hat b = \operatorname{Cos} \left( {90 - B} \right)\hat i + \operatorname{Sin} \left( {90 - B} \right)\hat j$
$\hat b = \operatorname{Sin} B\hat i + \operatorname{Cos} B\hat j$
Now
Taking the cross product of the above two vectors i.e.,
$\hat a \times \hat b = \left( {\operatorname{Cos} A\hat i + \operatorname{Sin} A\hat j} \right) \times \left( {\operatorname{Sin} B\hat i + \operatorname{Cos} B\hat j} \right)$
$\because A \times B = \left | A \right |\left | B \right |\operatorname{Sin} \theta \hat k$
$\therefore \left | {\hat a} \right | \left | {\hat b} \right |\operatorname{Sin} \theta \hat k = \operatorname{Cos} A\operatorname{Cos} B\left( {\hat i \times \hat j} \right) + \operatorname{Sin} A\operatorname{Sin} B(\hat j \times \hat i)$ Applying Properties of unit vectors $\hat i,\hat j,\hat k$
$\hat i \times \hat j = \hat k$ $\hat j \times \hat i = - \hat k$
$\hat i \times \hat i = null$ $\hat j \times \hat j = null$ and
$\left | A \right |$=1 and $\left | B \right |$=1 as both are unit vectors
Also substituting the value of the angle between the vectors, $\theta = 90 - \left( {A + B} \right)$
Finally, we get,
\[\operatorname{Sin} \left( {90 - \left( {A + B} \right)} \right)\hat k = \operatorname{Cos} A\operatorname{Cos} B\hat k + \operatorname{Sin} A\operatorname{Sin} B\hat k\]
$\therefore \operatorname{Cos} \left( {A + B} \right) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B$
Note:
The Cross product is a vector quantity
If two vectors are parallel to each other then their cross product will be zero since $\operatorname{Sin} 0^\circ = 0$
The dot product is a scalar quantity
If two vectors are perpendicular their dot product will be zero since $\operatorname{Cos} 90^\circ = 0$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

