Answer
Verified
424.8k+ views
Hint: To solve such questions start by separately computing the left-hand side and right-hand side of the given equation. Next, write each term in the given equation to its corresponding $\sin x$ and $\cos x$ values. Then check whether the left-hand side and right-hand side are equal.
Complete step by step answer:
Given $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$
First consider the left-hand side of the given equation, that is,
$\dfrac{{\tan x}}{{\cos ecx + \cot x}}......(1)$
We know that
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
Also, it is known that
$\cos ecx = \dfrac{1}{{\sin x}}$
And
$\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substitute these in the equation $\left( 1 \right)$ , that is,
$\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}}}$
Rearranging the terms we get,
$\dfrac{{\sin x}}{{\cos x\left( {\dfrac{{1 + \cos x}}{{\sin x}}} \right)}}$
Taking $\sin x$ to the numerator we get
$\dfrac{{{{\sin }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}......(2)$
We also know that,
${\sin ^2}x + {\cos ^2}x = 1$
Rearranging this we get,
${\sin ^2}x = 1 - {\cos ^2}x$
Substituting this in the equation $\left( 2 \right)$
$\dfrac{{1 - {{\cos }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}$
We know the identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , so we can write the above equation as,
$\dfrac{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{\cos x\left( {1 + \cos x} \right)}}$
Canceling out the common terms in the numerator and denominator, we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(3)$
Next consider the right-hand side of $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ , that is
$\sec x - 1$
We know that,
$\sec x = \dfrac{1}{{\cos x}}$
Substituting this on the right-hand side, we get,
$\dfrac{1}{{\cos x}} - 1$
Further simplifying we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(4)$
From equation $\left( 3 \right)$ and equation $\left( 4 \right)$ , it can be seen that LHS is equal to RHS.
Therefore, proved the identity $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ .
Additional information:
All trigonometric ratios of angle can be easily found if one of the trigonometric ratios of an acute angle is given. The value of $\sin x$ or $\cos x$ never goes beyond $1$ . Also, the value of $\sec x$ or $\cos ecx$ is always greater than or equal to $1$ .
Note: In order to solve these types of questions, one should be very clear about the trigonometric identities. The simplest way to solve this type of question is to equate each term of the equation to its corresponding $\sin x$ and $\cos x$ values
Complete step by step answer:
Given $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$
First consider the left-hand side of the given equation, that is,
$\dfrac{{\tan x}}{{\cos ecx + \cot x}}......(1)$
We know that
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
Also, it is known that
$\cos ecx = \dfrac{1}{{\sin x}}$
And
$\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substitute these in the equation $\left( 1 \right)$ , that is,
$\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}}}$
Rearranging the terms we get,
$\dfrac{{\sin x}}{{\cos x\left( {\dfrac{{1 + \cos x}}{{\sin x}}} \right)}}$
Taking $\sin x$ to the numerator we get
$\dfrac{{{{\sin }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}......(2)$
We also know that,
${\sin ^2}x + {\cos ^2}x = 1$
Rearranging this we get,
${\sin ^2}x = 1 - {\cos ^2}x$
Substituting this in the equation $\left( 2 \right)$
$\dfrac{{1 - {{\cos }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}$
We know the identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , so we can write the above equation as,
$\dfrac{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{\cos x\left( {1 + \cos x} \right)}}$
Canceling out the common terms in the numerator and denominator, we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(3)$
Next consider the right-hand side of $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ , that is
$\sec x - 1$
We know that,
$\sec x = \dfrac{1}{{\cos x}}$
Substituting this on the right-hand side, we get,
$\dfrac{1}{{\cos x}} - 1$
Further simplifying we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(4)$
From equation $\left( 3 \right)$ and equation $\left( 4 \right)$ , it can be seen that LHS is equal to RHS.
Therefore, proved the identity $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ .
Additional information:
All trigonometric ratios of angle can be easily found if one of the trigonometric ratios of an acute angle is given. The value of $\sin x$ or $\cos x$ never goes beyond $1$ . Also, the value of $\sec x$ or $\cos ecx$ is always greater than or equal to $1$ .
Note: In order to solve these types of questions, one should be very clear about the trigonometric identities. The simplest way to solve this type of question is to equate each term of the equation to its corresponding $\sin x$ and $\cos x$ values
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE